当 x趋于正无穷limf(x)=0时,必有x趋于正无穷时limf(x)=0
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 23:05:54
必要性:因为limf(x)=A【x趋于无穷】,所以任给正数ε,存在正数M,当│x│>M时,有│f(x)-A│M时,有│f(x)-A│
答案好像是0分子有界,分母趋向无穷整体趋向0
反证法:若x->+∞时,B式不->∞,则A式/B式->∞,与f(x)->∞矛盾.所以必然有B式->∞LS说的很对..分子分母同时->∞时,不能直接相除求f(x)的极限,而要用洛必达法则,先将分子分母同
由积分中值定理,存在0
∵x趋于正无穷大时lim3xf(x)=lim[4f(x)+6]又limxf(x)limf(x)存在∴x趋于正无穷大时limf(x)=6/(3x-4)=0
反证,假设limf(x)不等于0,不妨设limf(x)=b,b>0由极限的保号性和有界性可知,存在X,存在c,0cf(x)dx=f(x)dx[x从a到X]+f(x)dx[x从X到正无穷大]前一部分为定
你题目很怪异,f(x)中没有x,是f(n)?3^n无界,所以你证明不对根据斯特林公式,n!=[根号(2pin)][(n/e)^n][e^(t/12n)]其中01,所以f(x)又f(x)>0,[3e/n
无穷/无穷型的洛必达法则limf(x)=lime^xf(x)/e^x洛必达法则得=lime^x(f(x)+f'(x)/e^x=limf(x)+f'(x)=0,于是limf'(x)=limf(x)+f'
由题意知,f(0)=0,又不知f(x)是否可导,所以只能用导数定义做:lim(x→0)f(ax)/x=alim(x→0)[f(ax)-f(0)]/ax=af'(0)=1/2;所以f'(0)=1/2a;
时,limf(x)=正无穷,所以函数无界.说明:只有在闭区间连续的函数才有界.如果增加条件当x趋于正无穷时,limf(x)=1.那么在半闭半开区间[0,
1再问:求详细过程谢谢!再答:原式=根号(x^2+2x)/x-根号(x-1)/x=根号(x^2+2x)/根号(x^2)-根号(x-1)/根号(x^2)[因为x---.>正无穷,所以x>0,进而x=根号
极限不存在.上下同时除以x^2,令t=y/x,则原式=t/(1+t^2).由于t可以是任意非负数,所以极限不存在.
正确,极限不存在(但可以表示为limx→+∞lnx=+∞)再问:对对,答案就是这个,我还以为这两者不一样呢。原来是一个意思啊--
lim(x→+∞)x^(1/x)=lim(x→+∞)e^[lnx^(1/x)]=lim(x→+∞)e^(lnx/x)=e^[lim(x→+∞)(lnx/x)]=e^[lim(x→+∞)(1/x)]=e
不一定举例说明:设f(x)=1+(1/x),满足当x趋于正无穷时,limf(x)=1,且在(0,正无穷)上连续,但是在x=0点函数无界.因为当x趋于0+时,limf(x)=正无穷,所以函数无界.说明:
先除开,前者极限是1/2,后者是(1/2x)乘以cosx,(1/2x)是x趋于正无穷时的无穷小,而cosx有界,根据无穷小的性质,(1/2x)乘以cosx的极限为0,故原式极限为1/2.
原式=sin(1/x)/(1/x)显然1/x趋于0所以极限=1
因为y=f(x)在(0,+∞)有界,故limf(x)=c(一个常数),x→+∞所以limf'(x)=0x→+∞
必要性:因为limf(x)=A【x趋于无穷大】,所以任给正数ε,存在正数M,当│x│>M时,有│f(x)-A│M时,有│f(x)-A│