当n趋向于无穷小时,n分之1乘以sinn求极限

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 13:10:03
当n趋向于无穷小时,n分之1乘以sinn求极限
求极限:当n趋向无穷时,(-1)的n次方除以n=?

(-1)n次方/n,当n为奇数时原式=-1/n当n趋向无穷时,-1/n的极限为0当n为偶数时原式=1/n当n趋向无穷时,1/n的也极限为0所以(-1)n次方/n,当n趋向无穷时,极限为0

用夹逼定理证明极限:当n趋向于无穷时,(1+x)^(1/n)=1

等价于1/nln(1+x)趋于0显然等式大于等于0,又有ln(1+x)小于等于某个常数m,所有等式又小于等于m/n两边取极限即得1/nln(1+x)=0当n趋于无穷时,得证

求当n趋向于无穷时,lim[cos(θ/n)])^n)^n=?

lim{[cos(θ/n)]^n}^n=lim[cos(θ/n)]^(n^2)=lim{1+[cos(θ/n)-1]}^(n^2)=lim{{1+[cos(θ/n)-1]}^[1/(cos(θ/n)-

n^2/3^n当n趋向于无穷时求极限

lim(n^2)/(3^n)=lim(2n)/(3^n*ln3)=lim(2)/(3^n*(ln3)^2)=0

若当n趋向于无穷时,limun=a,证明:当n趋向于无穷时lim|un|=|a|

由limun=a,知对于任意的e>0,存在自然数k0,使得n>k0时,有|un-a|k0时,||un|-|a||小于等于|un-a|

求极限 n趋向于无穷 lim((根号下n^2+1)/(n+1))^n

设y=[√(n^2+1)/(n+1)]^nlny=nln[√(n^2+1)/(n+1)]=n[1/2ln(n^2+1)-ln(n+1)]lim(n→∞)lny=lim[1/2ln(n^2+1)-ln(

证明(n趋向于无穷)lim n的根号n次方=1

记n(上标)√n=1+hn,则hn>0(n>1)从而n=(1+hn)^n>n(n-1)/2×(hn)^2即hn再问:n=(1+hn)^n>n(n-1)/2×(hn)^2这不看不懂,解释一下是什么意思再

高等数学之1/n.就是n分之一.怎么求和取极限?当n趋向于无穷?

该级数∑1/n=+∞,发散!再问:如果对于数列1/n来说可以求和吗?再答:数列求和就是级数,有限项可求(本题无公式),无限项是无穷大。

求极限lim(n趋向于无穷)(n+1)(根号下(n^2+1)-n)

(n+1)(根号n^2+1-n)*(根号n^2+1+n)/(根号n^2+1+n)=(n+1)*1/(根号n^2+1+n)上下同时除以n=(1+1/n)/(根号1+1/n^2+1/n)=1/1=1

(n+2)^3/(n+1)^4的极限(当n趋向于无穷)

使用洛必达法则,(n+2)^3/(n+1)^4=3(n+2)^2/[4(n+1)^3]=6(n+2)/[12(n+1)^2]=6/[24(n+1)]=0

计算数列极限,当N趋向于无穷时,根号下(N^2+4N+5)-(N-1)的极限

√(n^2+4n+5)-(n-1)=[(n^2+4n+5)-(n-1)^2]/[√(n^2+4n+5)+(n-1)]=(6n+6)/[√(n^2+4n+5)+(n-1)]=(6+6/n)/[√(1+4

判断极限是否存在lim [n+(-1)^n]/n n趋向于无穷 lim |x|/x x趋向于0

1.n趋向于无穷.lim[n+(-1)^n]/n=lim[1+(-1)^n/n],由于|(-1)^n/n|=1/n趋于0,故(-1)^n/n趋于0所以:lim[n+(-1)^n]/n=lim[1+(-

当n趋向于无穷,n的阶乘除以n的n次方等于多少

请写一下过程回答:n的阶乘等于1一直乘到n,n的n次方等于n个n相乘,这个题就相当于是1/n乘2/n……乘1,当n趋近于无穷的时候1/n等于0,.当然,你也可以用诺必达法则做

求极限:Lim(1+1/n-1/n^2)^n n趋向于正无穷

((1+1/n-1/n^2)^(1/(1/n-1/n^2)))^(1/n-1/n^2)n=e^1-1/n=e

如何证明(N+1/N)的N次方的极限为e(当n趋向于正无穷)

你可以翻阅大学的高等数学课本,通常是第一册呢.证明用到了有界单调数列,必有极限

n(1-2的n分之a次方) 当n趋向无穷 极限是多少

看图:--------------------------------------------------------希望可以帮到你!如对回答满意,--------------------------

大一微积分求证:当n趋向于无穷时,n的n次方根趋向于1.

化成以e为底的幂函数,求幂函数的指数部分极限.指数部分是(lnn)/n,使用洛毕达法则,得知,指数部分极限是0.e的0次方就是1,所以原题极限是1.