ab为圆o的直径,弦AF平行于半径OE,,求证弧BE=弧EF
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 18:43:17
推测一下,是弦DF垂直BC于G连接BD,AB为直径,则∠ADB=90度在直角三角形中,BD=AB*sin∠BAD=10×4/5=8勾股定理,AD=6设∠BOD=a∠CBF是弦切角所以∠CBF=1/2∠
CDFE,AFBC,AEBD.
证明:连接OC∵OB=OC∴∠OBC=∠OCB∵OD∥BC∴∠AOD=∠OBC,∠COD=∠OCB∴∠AOD=∠COD∵OA=OC,OD=OD∴△AOD≌△COD(SAS)∴∠OCD=∠OAD∵AD切
证明:连接AC ∵∠AOD=∠BOC ∴弧AD=弧BC ∵弦CE‖AB ∴∠BAC=∠ACE ∴弧BC=弧AE ∴弧AE=弧AD
(1)连接OD∵OC∥AD∴∠COD=∠ODA,∠BOC=∠OAD∵OA=OD∴∠OAD=∠ODA∴∠BOC=∠DOC∵OB=OD,OC=OC∴△BOC≌△DOC∴∠ODC=∠OBC=90°∴CD是圆
(1)证明:连接OC.∵CE⊥AB,CF⊥AF,CE=CF,∴AC平分∠BAF,即∠BAF=2∠BAC.∵∠BOC=2∠BAC,∴∠BOC=∠BAF.∴OC∥AF.∴CF⊥OC.∴CF是⊙O的切线.
很好做的~因为OC‖AD所以∠COB=∠A,∠COD=∠ODA因为OA=OD所以∠A=∠ODA所以∠COB=∠COD于是△COD≌△COB所以∠COD=∠COB=90°,所以DC为圆O的切线
证明:连接AC因为C是弧AE的中点所以弧AC=弧EC所以∠CAE=∠ABC因为直径AB垂直平分弦CN所以弧AC=弧AN所以∠ACN=∠ABC所以∠ACN=∠CAE所以AG=CG因为AB是直径所以∠AC
这个题目有问题吧,AB是直径,C是弧AB的中点,CD垂直于AB的话,D点应该和圆心O重合.
证明:∵CD是⊙O的直径∴∠CED=90°(直径所对的圆周角是直角)∵CE//AB∴∠AFD=∠CED=90°∵AB是⊙O的直径∴EF=DF(垂径定理:垂直于弦的直径平分弦及弦所对的两条弧)
提示,连接AC,过C作CG垂直AF,垂足为G令CF=a,CE=x,A0=rCG=FG=1/2根号2a,AG=3/2根号2aAC=根号5ar=根号5a/2用△AOE,△CGE相似AE/CE=AO/CGA
联接FD,AC因AB⊥CD,所以AC=AD,即∠ADC=∠AFD(等弦对等角)∠FAD=∠EAD所以△AED∽△ADF即AD/AF=AE/ADAD^2=AF*AE
证明:连接MB∵M为圆上一点,∴∠AMB=∠FMB=90°∴∠AMD+∠DMB=∠FMC+∠CMB又∵B为弧CD的中点∴∠DMB=∠CMB∴∠AMD=∠FMC再问:谢了
(1)证明:连接OD,∵OC//AD,∴∠DAO=∠COB,∠ADO=∠DOC∴∠DOC=∠BOC,∵DO=BO,CO=CO∴⊿CDO≌⊿CBO(SAS),∴∠CDO=∠CBO=90º即DC
CF=FG=2,CG=GD=4,FG=6根据相交弦定理CF*GF=AF*FE2*6=3*FEEF=4
(1)证明:连接OC、OD、OG,作OH⊥BG于H,交CD于M,∵AB为圆O的直径,BE⊥CD于E,AF⊥CD于F,∴∠BGF=90°,∴四边形BGFE是矩形,∴BG=EF,BG∥EF,∵OH⊥BG,
证明:连接BF∵AB为直径∴∠AFB=90°∵CD⊥AB∴∠AME=90°∴△AME∽△AFB∴AE/AM=AB/AF∴AE·AF=AM·AB再问:请问第二小题怎么做再答:补图的话就是让∠BAE大一点
我是最快的因为∠BCD=∠BAD,∠AED=∠CEB三角形CEB相似于三角形AED因为AD/BC=ED/BEAD=4根3因为平行四边形adcfcf=ad=4根3第二问:连接fo,co因为af=cd=f
证明:连AC因为C是弧AE的中点所以弧AC=弧EC所以∠CAE=∠ABC因为AB是直径所以∠ACB=90,即∠ACD+∠BCD=90°因为CD⊥AB所以∠CDB=90°即∠ABC+∠BCD
设∠BOC=θ,则∠DAB=θ,AD=10cosθ,OC=5/cosθ,AD+OC=10cosθ+5/cosθ>=2根号(10cosθ*5/cosθ)=10根号2,cos^2θ=1/2,cosθ=根号