AB垂直CD,AB交CD于点E,AC=2,CD=4,圆的半径

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 16:10:57
AB垂直CD,AB交CD于点E,AC=2,CD=4,圆的半径
如图CD垂直于AB于点D,BE垂直于AC于点E,BE,CD交于点O,且AO平分角BAC试说明OB=OC

图呢?如果ABC是三角形就可以.证明如下:因为AO平分角BAC,所以角BAO=角CAO.因为CD垂直于AB,BE垂直于AC,所以角ADO=角AEO=90°.又因为在三角形ADO和AEO中共用边AO,故

如图在平行四边形abcd中,ae垂直bc交cb的延长线于点e,af垂直cd交cd的延长线于点f,ab+bc+cd+da=

AB+BC+CD+DA=32cm,∴AB+BC=16cm.BC=3/5AB,∴8/5AB=16,AB=10cm.,∠EAF=2∠C,∠EAF+∠C=180°,∴∠C=60°.∴∠ABE=60°.∴BE

AB是圆O的直径,点C是OA的中点,CD垂直于AB交半圆于D点,以点C为圆心,CD为半径画弧交AB于E点,若AB=8

连接OD由题可知OC=2,OD=4在直角△DCO中,求得DC=2又根号3,得∠DOC=60°∴S扇形DOA=(60°/360°)*π*OD^2=8π/3∴S扇形DCE=(90°/360°)*π*CD^

如图,在三角形ABC中,∠ACB=90,CD垂直AB于点D,∠BAC评分线交CD于E,过E点作EF∥AB,交BC于点F,

做EM⊥AC于M∵AE平分∠BACCD⊥AB即ED⊥AB∴EM=ED做FN⊥AB于N∵EF∥AB,ED⊥AB∴∠DEF=∠EFN=∠EDN=90°∴EFND是矩形∴ED=FN=EM∵∠MCE=∠ACD

如图,在矩形ABCD中,AB=2√2,AD=1,点P在AC上,PQ垂直与BP交CD于Q,PE垂直CD交CD于E点P从A点

看题目应该是高中的问题,思路:求三角形PQE的面积需要知道底和高,因为三角形PQE是直角三角形,所以只要知道两直角边就行,求PE的长度我们可以利用三角形PEC与三角形CAD相似,关键是EQ的长度更难求

如图,在三角形ABC中,角ACB=90度,CD垂直于AB,AE平分角BAC交CB于点E,EF垂直于AB,交AB于点F.&

⑴∵AE平分∠BAC∴∠CAE=∠BAE∵∠B=90°-∠BAC∠ACD=90°-∠BAC∴∠B=∠ACD∵∠CGE=∠CAE+∠ACD∠CEG=∠BAE+∠B∴∠CGE=∠CEG∴CG=CE⑵由⊿A

如图 已知:圆O中 弦AB垂直于弦CD AB弧=CD弧 连结CO 延长CO 交AB于E 连结AO 交CD于点F 求证:

证明:(1)延长AO,交⊙O于N,延长CE,交⊙O于M,连接BN,DM则∠D=∠B=90°∵弧AC=弧BD∴弧AB=弧CD∴AB=CD∵AN=CM∴△ABN≌△CDM∴∠A=∠C∵∠A+∠AFD=90

如图,在Rt三角形ABC中,角ACB=90度,CD垂直AB于D,AF平分角CAB交CD于点E,交C

过G做AB垂线交于HCF=AC*tan(∠CAB/2),AD=AC*cos(∠CAB),DE=GH=AD*tan(∠CAB/2)=AC*cos(∠CAB)*tan(∠CAB/2),GB=GH/cos(

在三角形ABC中 AB=AC CD垂直AB于D BE垂直AC于E CD,BE 交于点O 求证AO平分角BAC

这是初2的问题,包括全等和相似等知识!很典型!做类似的问题首先要画图这点很重要!首先这是一个等边三角形!证:因为AB=AC所以角ABC=角ACB,又因为DC垂直AB于DBE垂直AC与E所以角BDE=角

AB垂直于BD于B,AC垂直于CD于C,AC与BD交于点E.若AE=5,DE=2,CD=9/5,求AB的长

∵AB⊥BDAC⊥CD∴∠ABE=∠DCE=90º又∠AEB=∠DEC∴△EBA∽△ECD∴AE/DE=AB/DC5/2=AB/(9/5)5x9/5=2ABAB=9/2

AB垂直CD于点O,直线EF交AB于点O,

因为ABCDEF交于点O,所以∠COF=∠EDO=30∵AB⊥CD∴∠AOD=90所以∠AOE=60或DOE=COF=3090+30=120=∠AOE所以本题有两60或120

如图,CD垂直AB于点D,BE垂直AC于点E

因为ao平分∠bac,CD垂直AB于点D,BE垂直AC于点E.所以oe=od(角平分线定理)所以三角形aod全等与aoe,所以∠aoe=∠aod.所以由平角得到∠dob=∠eoc,再由全等定理得三角形

如图,在圆O中,弦CD与直径AB垂直于H点,E是AB延长线上一点,CE交圆O于F点

(1)证明:连接FA.∵AB为圆O直径,所以∠AFB=90°,∴∠AFD+∠DFB=90°,∠CFA+∠BFE=90°.∵弦CD与直径AB垂直于H,∴由垂径定理,得弧CA=弧DA,∴∠CFA=DFA.

如图 ,在△ABC中,CD平分∠ACB,AE垂直CD于点E,EF//BC交AB于点F,求证AF=BF

证:延长FE交AC于G,这里只要证明了G是AC的中点即可EF∥BC,得角GEC=∠BCD,又CD是∠ACB平分线,所以∠GEC=∠GCD,所以EG=CG∠GEC+∠AEG=∠GCE+∠EAG=90°,

如图 ab是圆o的直径 弦cd垂直ab于m点 p是cd延长线上的一点 pe与圆o相切于点e be交cd于f 求pf方=p

这是一道关于圆的题目,下面开始证明证明:连结AE∴∠AEB=90º,∠PEB=∠EAB(弦切角定理)∵CD⊥AB,∴∠BFM=∠BAE=∠PEF∴PE=PF连接CE,ED∵∠PED=∠PCE

如图,在圆O中,AB,CD是两弦,且AB>CD,OE垂直于AB于点E,OF垂直于CD于点F,求证O

做辅助线,连接OA=OB=OC=OD,因为AB大于CD,所以角OAB和角OBA小于角OCD和角ODC,所以OE小于OF.