ab是园o的直径,园o过bc的中点,且de垂直ae于点e

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 06:25:54
ab是园o的直径,园o过bc的中点,且de垂直ae于点e
如图,ab为园o的直径,c是圆o上一点,p是圆o外一点,op//bc,角p=角bac

(1)证明:∵AB是⊙O的直径∴∠ACB=90°∵OP//BC∴∠POA=∠CBA∵∠P=∠BAC∴∠PAO=∠ACB=90°∴PA是⊙O的切线(2)∵∠P=∠BAC,∠PAB=∠ACB∴△PAO∽△

如图,AB是园O的直径,C是园O上一点,OD垂直BC于点D,过点C作园O的切线,交OD的延长线于点E,连接BE

作DG⊥OB于G.连接OC∵OD⊥BC∴∠BDO=90°∴sin∠ABC=OD/OB∴OD=OB*sin∠ABC=6∴BD=√(OB²-OD²)=3√5∵S⊿OBD=1/2OB*D

如图,已知在⊙O中,AB是直径,过B点做⊙O的切线BC,连接CD,若AB//OC交⊙O于点D,求证:

证明:连接OD∵BC是⊙O的切线∴∠OBC=90°∵AD‖OC∴∠A=∠BOC,∠ODA=∠DOC∵OA=OD∴∠A=∠ODA∴∠DOC=∠BOC∵OD=OB,OC=OC∴△OCD≌△OCB∴∠ODC

如图,AB是⊙O的直径,C是⊙O上一点,过圆心O作OD⊥AC,D为垂足,E是BC上一点,G是DE的中点,OG的延长线交B

(1)结论:OD∥BC,证明:∵AB是⊙O直径,C是⊙O上一点,∴∠ACB=90°.即BC⊥AC.∵OD⊥AC,∴OD∥BC.(2)结论:EF=BE+FC,证明:∵OD⊥AC,∴AD=DC.∵O为AB

ab是园o的直径,过点o作弦bc的平行线,交过点a的切线ap于点p,连结ap于点p,连结ac交op于点d,连结bd.求三

怎么可能全等呢?是相似吧?只要BC不等于圆的半径就一定不会全等(1)AB为圆直径,所以∠BCA=90AP为圆切线,AB为圆直径,所以AP⊥AB,∠OAP=90∠BCA=∠OAPOP∥BC,所以∠AOP

如图,已知Rt三角形ABC内接于圆o,AC是圆o直径,D是弧AB的中点,过D作BC的垂线,

解∵AC为直径,∴AB⊥BC,∵EF⊥BC,∴AB∥EF,∵弧AD=弧BD,∴AB⊥OD,(过圆心平分弧的直线垂直平分弦),∴OD⊥EF,∴EF为圆O的切线.

如图,AB是⊙O的直径,过点A作AC交⊙O于点D,且AD=CD,连接BC,过点D作⊙O的切线交BC于点E.

(1)结论:DE⊥BC.理由:连接OD,∵AB是⊙O的直径,∴OA=OB.∵AD=CD,∴DO∥BC.又∵DE是⊙O的切线,∴DE⊥DO,即∠ODE=90°.∴DE⊥BC.(2)连接BD,∵AB是圆的

已知AB为圆O的直径,过B点作圆O的切线BC,连接OC,弦AD平行OC.求证:CD是圆O的切线.

证明:连接BD交OC于E因为AB是直径所以∠ADB=90度所以AD⊥BD因为O为AB中点,AD平行OC所以E为BD中点所以OC⊥BD因为OD=OB所以OC垂直平分BD所以CD=BC因为BC为圆O的切线

AB是圆O的直径.BC垂直于AB于B.连OC.过A作AD平行OC交圆o 于D.求证CD是圆o 的切线

证明:AO=DO,∠ADO=∠DAOAD‖OC,∠ADO=∠DOC,∠DAO=∠COB,∴∠DOC=∠COBDO=OB,OC=OC△DOC≌△BOC∠CDO=∠CBO=90CD是圆O切线

2:已知AB是圆O的直径,圆O过BC的中点D,且DE⊥AC.

1,易证DO//AC,因为DO为为三角形BCA两腰的等分线,所以由DE⊥AC→DE⊥DO,故DE是圆的切线.2,连AD,则AD是BC的中垂线,所以△ABD≌△ACD,所以∠ABD=∠ACD=30°,C

如图,⊙O的直径AB是4,过B点的直线MN是⊙O的切线,D、C是⊙O上的两点,连接AD、BD、CD和BC.

(1)证明:∵AB是⊙O的直径,∴∠ADB=∠ADC+∠CDB=90°,∵MN切⊙O于点B,∴∠ABN=∠ABC+∠CBN=90°,∴∠ADC+∠CDB=∠ABC+∠CBN;∵∠ADC=∠ABC,∴∠

圆 切线 证明题如图AB是圆o的直径,圆o过BC的中点D,DE垂直AC,求证:DE是圆o的切线,

连接AD,OD,所以OD平行于AC,所以角ADO=角CAD,又因为,角CAD+角ADE=90度,所以角ADE+角ADO=角EDO=90度,所以OD垂直于ED,所以:DE是圆o的切线

AB是圆O的直径,点D在圆O上,BC为圆O切线,AD∥OC,求证:CD是圆O的切线.

连接OD,∵AB是圆O的直径,BC是圆O的切线∴∠CBO=90°∵OD=OB,CD=CB,OC=OC∴△COD≌△COB∴∠CDO=∠CBO=90°∴CD是圆O的切线再问:可是,题目并没有写CD=CB

如图,已知AB是⊙O的直径,过⊙O上的点C的切线交AB的延长线于E,AD⊥EC于D且交⊙O于F.连接BC,CF,AC.

⑵设⊙O的半径为R,AE=√(AD^2+DE^2)=10,OE=10-R,∵OC∥AD,∴ΔEOC∽ΔEAD,∴OC/OE=AD/DE=6/8=3/4,∴R/(10-R)=3/4,R=30/7,∴BE

AB是圆O的直径,BC垂直AB于B,连OC,过A作AD平行OC,过A做AD平行OC交圆O于D,求证CD是圆O 的切线

连接OD,则只需证OD⊥CD即可因为AD//OC,所以∠DAO=∠COB,∠ADO=∠COD又因为OA=OD,∠DAO=∠ADO,则∠COB=∠COD又因为OD=OB,OC为公共边,则△OCD与△OB

AB是圆O的直径,PA是圆O的切线,过点B作BC‖OP交圆O于点C.连结AC

设PO交AC于D因为PA是圆O的切线所以PA⊥AB因为AB是直径所以AC⊥BC因为BC//OP所以PO⊥AC因为AB=2所以OA=1因为PA=√2所以PO=√3因为△AOD∽△POA所以可得OA/OP

AB是圆O的直径

解题思路:连接OC,由OA=OC,利用等边对等角得到∠OAC=∠OCA,由∠DAC=∠BAC,等量代换得到一对内错角相等,得到AD与OC平行,由AD垂直于EF,得到OC垂直于EF,即可得到EF为圆O的

如图,已知在三角形ABC中,AB=AC,以AB为直径的圆O交BC于点P,过点p作园o的切线pd交ac

证明:连接AP∵AB是⊙O的直径∴∠APB=90°∵AB=AC∴BP=CP(等腰三角形三线合一)∵AO=BO∴OP是△ABC的中位线∴OP//AC∵PD是⊙O的切线∴PD⊥OP∴PD⊥AC