ab是圆o上的两点,∠AOB的=120°
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 05:27:19
连接DO∵A,B是圆O上的点∴AO=BO又∵点D为劣弧AB的中点∴弧AD=弧BD∵AD=BD∠AOD=∠DOB=60度又∵OD是半径∴AO=DO,BO=DO∴△AOD和△DOB是等边三角形∴AO=DO
连结DB,则∠E=∠BDC,由同弧所对圆周角为圆心角的一半,得,弧ACB所对圆周角∠ADB是其所对圆心角∠AOB(注意,是大角)的一半,即∠D+∠E=∠ADB=1/2∠AOB(大角)=1/2(360°
证明:连接OC∵C是弧AB的中点,∠AOB=120°∴∠AOC=60°∴△AOC是等边三角形∴OA=AC同理可得BC=OB∴OA=OB=BC=AC∴四边形OACB是菱形再问:你确定你没有看错图?
1.连接OC,则∠AOC=60°∵OC=OB∴△AOC是等边三角形同理△BOC是等边三角形∴AOBC是菱形.
∵∠AOB=120°,弧AC=弧BC,∴∠COA=∠COB=60°,∵OA=OC=OB,∴ΔOAC与ΔOBC是等边三角形,∴OA=OB=AC=BC,∴四边形OACB是菱形.
解题思路:连OC,由C是弧的中点,∠AOB=l20°,根据在同圆或等圆中,相等的弧所对的圆心角相等得到∠AOC=∠BOC=60°,易得△OAC和△OBC都是等边三角形,则AC=OA=OB=BC,根据菱
解题思路:连OC,由C是弧AB的中点,∠AOB=l20°,根据在同圆或等圆中,相等的弧所对的圆心角相等得到∠AOC=∠BOC=60°,易得△OAC和△OBC都是等边三角形,则AC=OA=OB=BC,根
∵C为弧AB中点∴弧AC=弧BC∴∠AOC=∠BOC=½∠AOB=60°,AC=BC又∵AO=BO=CO∴△AOC,△BOC为等边三角形∴∠ACO=∠BOC,∠AOC=∠BCO∴AC∥OB,
题目中C是短弧AB的中点证明:因为C是弧AB的中点所以弧AC=弧BC所以AC=BC∠AOC=∠COB(在同圆或等圆中,如果①两个圆心角,②两条弧,③两条弦中,有一组量相等,那么它们所对应的其余各组量都
C是的中点打漏是C是弧AB的中点,⊿AOC.⊿BOC都是正三角形.OACB是菱形[四边相等]
焦点坐标为(p/2,0),A点坐标(a,√(2pa)),B点坐标为(a,-√(2pa))(a>0)AOB的垂心是抛物线焦点,则[√(2pa)-0]/(a-p/2)=-1/[-√(2pa)-0]/(a-
连接OC,可知角AOC=角BOC=60°所以AO=AC=BO=BD所以四边形OACB是菱形
【标准解答】连接AD,CO,AD和CO相交于E因为AC=CD,AO=DO所以四边形ACDO的对角线AD和CO互相垂直CE^2=AC^2-AE^2,EO^2=AO^2-AE^2,CE+EO=CO=2得A
证明:连OC,如图,∵C是弧AB的中点,∠AOB=l20°∴∠AOC=∠BOC=60°,又∵OA=OC=OB,∴△OAC和△OBC都是等边三角形,∴AC=OA=OB=BC,∴四边形OACB是菱形.
∠D=1/2∠AOC∠E=1/2∠BOC故∠D+∠E=1/2∠AOC+1/2∠BOC=1/2(∠AOC+∠BOC)=1/2(360-∠AOB)=1/2(360-M)
AOBC是菱形.证明:连OC∵C是AB^的中点∴∠AOC=∠BOC=1/2×120°=60°∵CO=BO(⊙O的半径),∴△OBC是等腰三角形∴OB=BC同理△OCA是等边三角形∴OA=AC又∵OA=
授人鱼不如授人以鱼,设出AB的坐标,中点的坐标夜出来了,AB的坐标满足两个条件,一个垂直一个在抛物线上,有这两个条件便可求出AB的坐标关系
1)A、O、B为直线上的点,所以∠AOB为平角.∠DOE=90°∠AOE=48°∴∠BOD=180°-90°-48°=42°2)∠COD=∠COB+∠BOD∠AOB=180°,OC平分∠AOB,∴∠C