ab是圆o的直径 点c是弧bd的中点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 14:03:49
1.求证cf=bf2.若cd=6,ac=8,求圆o的半径和ce的长1.证明:延长CE交圆O于M.直径AB垂直CM,则弧BM=弧BC.又弧CD=弧BC,则弧CD=弧BM,得∠BCM=∠CBD,故CF=B
证明:连接AC,则∠ACB=90°,易证∠BCF=∠BAC∵C是弧BD的中点∴弧BC=弧CD∴∠BAC=∠CBF∴∠CBF=∠BCF∴BF=CF连接OC,交BD于点M∵C是弧BD的中点∴OC⊥BD则O
连接OC因为OA=OC所以∠A=∠C因为OD//AC所以∠BOD=∠A(两直线平行,同位角相等)所以∠COD=∠C(两直线平行,内错角相等)所以∠BOD=∠COD所以弧BD=弧CD
延长CE交⊙O于G.连接BG、DG,∵EC⊥DC,∠DCE=90°,∴DG是直径,∠DBG=90°,∵AB是直径,DG是直径,∴弦BG=AD,∵OC⊥AB,∴∠BGC=45°,⊿GBF是等腰直角三角形
连接OC交BD于点E,那么OE垂直平分BD,且OE=1/2AD=1,所以EC=3-1=2,又因为AB是圆O的直径所以角ADB=90度,所以BD=根号36-4=4根号2,所以BE=4根号2/2,所以BC
(1)延长CE交圆于M,则弧CD=弧CB=弧BM∴∠BCM=∠CBD∴CF=BF(2)连结OC交BD于N则△CFN≌△BFE∴BE=CN=3-1=2又OE=1∴CE=2√2∴BC=2√3
连接OD,∵C是弧BD的中点,∴∠COD=∠COB,∵∠A=∠1/2∠DOB,∴∠A=∠COB,∴OC‖AD
(1)延长CE交圆于M,则弧CD=弧CB=弧BM∴∠BCM=∠CBD∴CF=BF(2)连结OC交BD于N则△CFN≌△BFE∴BE=CN=3-1=2又OE=1∴CE=2√2∴BC=2√3
连接CO,与BD交于点G因为AD=2,圆半径为3,即直径AB=6根据勾股定理得BD=4√2即DG=2√2因为C是弧BD的中点所以CO垂直BD因为AB是直径,所以角ADB=90度所以AD//OG因为O是
木分啊.[1].连接AC、OC、BC弧BC=弧CD,所以角DAC=角DAC,又因为角BAC=角OCA所以角DAC=角ACO,所以AD平行OC,所以角DAB=角COB三角形ADB与三角形OEC皆为直角三
1)AB=AC因为AB是圆的直径所以角ADB=角ADC=90度因为D是BC的中点所以DB=DC因为角ADB=角ADC,AD=AD所以三角形ADB全等于三角形ADC所以AB=AC2)当三角形ABC是等边
连接OC∠CAB=30°OA=OC所以∠COD=60°又OB=BD所以OD=2OC所以OC垂直于CD所以DC是圆O的切线
图形如图1、连接AD,AD⊥BC,又因为BD=CD,AD=AD故:AC=AB2、DE⊥AC,三角形CDE与三角形CAD相似,∠CDE=∠CAD=∠BAD=∠ADO故∠CDE+∠EDA=∠ADO+∠ED
(1)证明:连接AC,则∠ACB=90°,易证∠BCF=∠BAC∵C是弧BD的中点∴弧BC=弧CD∴∠BAC=∠CBF∴∠CBF=∠BCF∴BF=CF(2)连接OC,交BD于点M∵C是弧BD的中点∴O
证明:连接AD,OD,OC∵C是弧AD的中点∴∠AOC=∠DOC∵OA=OD∴AD⊥OC∵点D在圆弧上∴AD⊥BE∴CO∥BE∵CE⊥BE∴OC⊥EC∴CE是⊙O的切线
(1)证明:∵AB是⊙O的直径,∴∠ACB﹦90°又∵CE⊥AB,∴∠CEB﹦90°∴∠2﹦90°-∠ACE﹦∠A,∵C是BD的中点,∴BC=DC,∴∠1﹦∠A(等弧所对的圆周角相等),∴∠1﹦∠2,
证明:连接AC,则∠ACB=90°,易证∠BCF=∠BAC∵C是弧BD的中点∴弧BC=弧CD∴∠BAC=∠CBF∴∠CBF=∠BCF∴BF=CF连接OC,交BD于点M∵C是弧BD的中点∴OC⊥BD则O
(1)证明:连接AD.∵AB是⊙O的直径,∴∠ADB=90°.∵DC=BD,∴AB=AC.∵∠BAC=60°,由(1)知AB=AC,∴△ABC是等边三角形.在Rt△BAD中,∠BAD=30°,AB=8
1)连AD,则∠ADB=90,即:AD⊥BC而BD=CD即:AD在三角形BAC中既是高又是中线所以,BAC是等腰三角形AB=AC2)显然,∠B=∠C
(1)http://hiphotos.baidu.com/watwelve/pic/item/6b39a4231bb0ec59ac34de1d.jpg\x0d\x0d(2)http://hiphoto