ab是圆o的直径,cb是弦,od⊥cb

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 17:26:09
ab是圆o的直径,cb是弦,od⊥cb
如图,AB是圆O的直径,CA切圆O于A.连结CB交圆O于E,F为AC中点,求证:EF是圆O的切线.

连结AE,EO则:∠BEA=90°,∠BAC=90°证得∠B=∠C=45°所以∠EOA=90°三角形CEA为等腰直角三角形,EF为斜边中线、高四边形OEFA为正方形,EF垂直OE,所以EF是圆的切线

如图 ab是圆o的直径,点C是BA延长线上一点,CD切圆O于D点,弦DE平行CB,Q是AB上一动点,CA=1,CD是圆O

当Q从A向B运动的过程中,图中阴影部分的面积不发生变化 连结0D、OE.∵DE‖CB,∴S△QDE=S△ODE(同底等高)∴S阴影=S扇形ODE设圆的半径为r,由切割线定理,CD&s

如图5,AB是圆O的直径,点C是BA延长线上一点,CD切圆O于点D,弦DE平行CB,Q是AB上的一点,CA=1,CD=根

根据题意,连接OD,△ODC为直角三角形,所以,OD^2+CD^2=OC^2因为OD=R,OC=R+1,CD=√3×R所以,R^2+(√3R)^2=(R+1)^2R^2+3R^2=(R+1)^24R^

如图,圆O的直径DF与弦AB交于点E,C为圆O外一点,CB⊥AB,G是直线CD上一点,∠ADG=∠ABD,CD是圆O的切

24.证:连结AF则∠ABD=∠F∠ADG=∠ABD∴∠ADG=∠F,∵DF为⊙O的直径∴∠DAF=90°∴∠ADF+∠F=90°∴∠ADG+∠ADF=∠FDG=90°∴∠DAF=∠CDE=90°∵C

AB是圆O直径,CA切圆O于A,连接CB交圆O于E,F为AC中点,求证EF是圆的切线

连接AEEO角EAB加FAE是90EAB等于AEOAEF等于FAEAEB是90AEF加AOE是90

如图AB是圆O的直径,BC是圆O的弦,OD垂直CB于点E,交弧BC于点D,连接CD.

拜托啦,很急……今晚就要!详细过程哦!AB是圆O的直径,BC是圆O的弦,OD垂直CB,垂足为E,交弧BC于点D,连接AC,CD,DB设角CDB=α,角ABC=β,试找出α与β之间的一种关系式并给予证明

如图所示,AB为圆O的直径,CB是弦,OD⊥CB于E,交弧CB于D,连结AC.(1)请写出两个不同类型的

1、结论:1)AC∥OD∵直径AB∴∠ACB=90∵OD⊥CB∴∠OEB=90∴AC∥OD2)弧BD=弧CD∵OD⊥CB,OC=OB∴∠COD=∠BOD∴弧BD=弧CD2、设半径为R∵OD⊥CB∴CE

如图所示,AB为圆O的直径,CB是弦,OD⊥CB于E,交弧CB于D,连结AC.(1)请写出两个不同类型的正确结

(1)OD平分BC;角ACB=90°(2)设半径为RCE=4,OC=R,OE=R-2由勾股定理CE^2+OE^2=OC^216+(R-2)^2=R^2R=5所以半径为5

如图,AB是圆O的直径,CB是铉,OD⊥CB于点E,交圆O于点D,连接AC,AD

2、CE=EB=4,OE=R-ED=R-2OB^2=OE^2+EB^2R^2=(R-2)^2+4^2R=5

圆O与圆O'相较于点AB,AC是圆O的直径,CA的延长线交圆O’于D,CB的延长线交圆O'于E,

若想求圆O的周长很简单,π*AC=6π.估计楼主想求圆O'的周长吧?!连接AE和AB.AC为直径,则∠ABC=90°.∴∠ABE=90°,AE为圆O'的直径.则∠ADE=90°=∠ABC.又∠C=∠C

如图,AB是⊙O直径,CB是⊙O的切线,切点为B,OC平行于弦AD.

证明:连接OD;∵OA=OD,∴∠A=∠ADO.∵AD∥OC,∴∠A=∠BOC,∠ADO=∠COD.∴∠BOC=∠COD.∵OB=OD,OC=OC,∴△OBC≌△ODC.∴∠OBC=∠ODC,又BC是

如图,AB是圆O的直径,BC是圆O的切线,切点为B,D是圆O上一点,CD=CB,连接AD.OC.OC交圆O于E,交BD于

(1)三角形OBC全等于三角形ODC(SSS)角CDO=角CBO=90度所CD是圆O的切线(2)由结论(1)知OBCD四点共圆角ABD=角DCO=1/2角BCD所以角BCD=2角ABD(3)OBCD四

AB是圆O的直径,BC为弦,OD⊥CB于点E,交BCfu于点D

∵OE⊥BC∴E为BC中点∴BE=CE=4设半径为r则OD=rOE=OD-ED=r-2在三角形OBE中有OB²=BE²+OE²即r²=4²+(r-2)

如图,已知AB为圆O的直径,AD切圆O于点A弧EC等于弧CB则下列结论不一定正确的是?

图所示:因为AD切圆o于点A,而AB是圆的直径所以AB⊥AD又因为弧EC=弧CB所以∠BOC=∠COE因为弧CE对应的圆周心是∠COE,而对应的圆周角是∠CAE所以∠COE=2∠CAE因为弧CB对应的

已知:如图,AB是⊙O的直径,弦AD∥OC.求证:CD=CB.

证明:连接AC、OD.∵AD∥OC(已知),∴∠DAB=∠COB(两直线平行,同位角相等);又∵∠CAB=12∠COB(同弧所对的圆周角是所对的圆心角的一半),∴12∠DAB=∠CAB(等量代换),∵

如图,AB是圆O的直径,CB、CD分别与圆O相切于点B、D,求证AD平行OC

是OP吧?连接OP,OD,∵PD=PB,OB=OD,OP是公共边∴△PDO≌△PBO∴∠POD=∠POB=∠BOD/2∵∠A=∠BOD/2∴∠A=∠POB∴AD‖OP

如图,AB是圆O的直径,弦CD垂直AB于点M,连结CO,CB.

(1)连结AC、易知△ACM与△CBM相似,所以CM^2=AM×BM,代入得CM=4,所以CD=8(2)角COM=角OCB+角B=2角OCD,因此,角COM=60°,角OCD=30°,可知CB=2CM

AB是圆O的直径

解题思路:连接OC,由OA=OC,利用等边对等角得到∠OAC=∠OCA,由∠DAC=∠BAC,等量代换得到一对内错角相等,得到AD与OC平行,由AD垂直于EF,得到OC垂直于EF,即可得到EF为圆O的

已知AB是圆O的直径 AD切圆O于A 弧EC=弧CB 则下列结论不一定正确的是

:如图所示:因为AD切圆o于点A,而AB是圆的直径        所以AB⊥AD   &n