ab是圆o直径 pa pc是切线 a c为切点 pb交圆o于d
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 21:10:02
(1)连接OC,因为OA等于OC,角BAC等于30度所以角ACO=角BAC=30度所以角AOC=180°-30°-30°=120°又因为,PA、PB是圆O的切线所以PA⊥AD,PC⊥OC,所以角PAO
你的证明是错误的!△OCD与△OAD全等就不够条件,根据你作的辅助线,过点O作CD的垂线,这个垂足是否是C点,这是要证明的,通常这样的证明比较麻烦.比较好理解的证明是:连结OC、AC∵AB是直径∴∠A
证明:连接AC、OC.∵AB是直径,点C在⊙O上.∴∠ACB=90°AC⊥PB在Rt⊿ACP中.点D是PA的中点.∴AD=PD=CD则:∠PCD=∠P,∠ACD=∠DAC.∵OA=OC∴∠OAC=∠O
∵CD是⊙F的切线∴FD⊥CD∴在Rt△ABC中,CD=DF/(tan∠DCF)=DF/(tan∠OCA)∵AC是⊙O的切线∴OA⊥AC∴在Rt△OAC中,tan∠OCA=OA/AC∵AB是⊙的直径,
连接AEEO角EAB加FAE是90EAB等于AEOAEF等于FAEAEB是90AEF加AOE是90
可以,但似乎太麻烦了.如下证明可否:连结AC、DC,∵AB是直径,∴∠ACB=90°,∴∠ACP=90°,∵D是AP中点,∴DA=DC,∴∠DAC=∠DCA,∵OA=OC,∴∠OAC=∠OCA,∴∠D
(1)连接PO,交AB与点D,由于PA,PB是圆O的切线,则,PA⊥AC,PB⊥BO,AO=BO,PO为公共边;△PAO≌△PBO,PO⊥AB,在RT△PDA中,由AB=6,PA=5,勾股定理的,PD
a‖b∵a是圆O切线∴a⊥AB(切线与半斤垂直)∵b是圆O切线∴b⊥AB∴a‖b(内错角相等都是90度,两直线平行)
OA=OD=R,∠OAD=∠ODAOC‖AD,∠ODA=∠COD,∠OAD=∠BOC即∠COD=∠BOC又OB=OD=R,OC=OC三角形COD≌三角形COBBC是圆O的切线,切点为B,即CB⊥OB则
证明:PA切圆O于A,则∠PAO=90°.连接OC.OP平行BC,则:∠AOP=∠B;∠COP=∠OCB.又OB=OC,∠B=∠OCB.∴∠AOP=∠COP;又OA=OC,OP=OP.故⊿AOP≌⊿C
证明:连接BD交OC于E因为AB是直径所以∠ADB=90度所以AD⊥BD因为O为AB中点,AD平行OC所以E为BD中点所以OC⊥BD因为OD=OB所以OC垂直平分BD所以CD=BC因为BC为圆O的切线
设:切与G点.∵三角形OAD=OGD,OBC=OGC(各角的互补互余可推出)∴OG=OA=OB=R.
证明:连接OD∵BD∥CO∴∠B=∠COA∵∠B=1/2∠DOA∴∠DOC=∠COA连接AD所以AD⊥BD∵BD∥CO∴∠OCD=∠BDE(E为CD延长线一点)∠DAB=∠BDE∠DAB+∠B=90°
连接AD,OD,所以OD平行于AC,所以角ADO=角CAD,又因为,角CAD+角ADE=90度,所以角ADE+角ADO=角EDO=90度,所以OD垂直于ED,所以:DE是圆o的切线
连接OD,∵AB是圆O的直径,BC是圆O的切线∴∠CBO=90°∵OD=OB,CD=CB,OC=OC∴△COD≌△COB∴∠CDO=∠CBO=90°∴CD是圆O的切线再问:可是,题目并没有写CD=CB
联结OD、OC,因D是AP的中点,O是圆心,所以OD是三角形APB的中位线,因此角ADO与角P相等,角PCDD等于角CDO,角OCB等于角DOC,角PCD加角DCA等于90°,所以角ODC加角DCO等
证明:【D应为AP的中点】连接AC则∠ACB=90º【直径所对的圆周角是直角】∴∠PCA=90º∵D是AP的中点【根据直角三角形斜边中线等于斜边的一半】∴CD=AD=DP∴∠DAC
由勾股定理得BP=10连接AC,可证三角形ABC与PBA相似,可得BC=18/5,CP=32/5,AC=24/5过C作AP垂线,垂足为E三角形PCE与PBA相似,可得CE=96/25sinADC=CE
设圆O的半径为R则BC=2R则PB=PC+BC=4+2R因PA切圆O于A则AP²=PC·PB36=4×(4+2R)R=5/2再问:再答:设圆O的半径为R∵AP切圆O于A∴AP²=P
(1)连AD,取AE中点M,连DM.∵AB是直径,∴∠ADB=∠ADE=90°,∴△ADE是直角三角形,DM是斜边中线,∴AM=DM,由AO=DO,∴∠MAO=∠MDO=90°.∴CD⊥MD.∵AE是