AB是圆O直径,E为弧BC中点,作FG⊥AB,∠D=2∠BAE求证AD是圆O切线

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 21:01:34
AB是圆O直径,E为弧BC中点,作FG⊥AB,∠D=2∠BAE求证AD是圆O切线
AB是圆O的直径,C是弧BD的中点,CE垂直AB,垂足为E,BD交CE于点F.若AD等于2,圆O的半径为3,求BC的长

连接OC交BD于点E,那么OE垂直平分BD,且OE=1/2AD=1,所以EC=3-1=2,又因为AB是圆O的直径所以角ADB=90度,所以BD=根号36-4=4根号2,所以BE=4根号2/2,所以BC

如图,AB是圆O的直径,BC是弦,D为弧AC中点,求证OD平行BC

先吐槽一下==图好难看做法是连接AC和OC证明:因为角ACB所对的线段AB为圆的直径所以角ACB为90°因为弧AD=弧CD所以角AOD=角COD同时易知AC与OD垂直易知角ACO+角COD=90°角A

如图,ab是圆o的直径,d是弧bc的中点,ac,bd的延长线交于点e,求证ae=ab

证明:连接AD∵AB是圆O的直径∴∠ADB=90°=∠ADE∵D是弧BC的中点∴弧BD=弧CD∴∠CAD=∠BAD∵AD=AD∴△AED≌△ABD∴AE=AB再问:d点是be的中点吗、辅助线是怎么做的

ab是圆o的直径,C是弧BD的中点,CE垂直于AB,垂足为E,BD交CE于点F,求证:若AD=2,圆O的半径为3,求BC

连接CO,与BD交于点G因为AD=2,圆半径为3,即直径AB=6根据勾股定理得BD=4√2即DG=2√2因为C是弧BD的中点所以CO垂直BD因为AB是直径,所以角ADB=90度所以AD//OG因为O是

如图所示 AB为圆O的直径 D是弧BC的中点 DE⊥AC交AC的延长线于点E 圆O的切线BF交AD的延长线于点E

1连结OD∵OA=OD∴∠OAD=∠ADO∵D是弧BC的中点∴∠CAD=∠OAD∴∠CAD=∠ADO∴OD‖AE又∵DE⊥AE∴OD⊥DE∴DE是圆O的切线2过D作DH⊥ABH为垂足∵D是弧BC的中点

AB是圆O的直径,D是弧BC的中点,AC,BD的延长线相交于点E,求证AE=AB

如图,AB为圆o的直径,AB=10,dc切圆o与点c,AD垂直于垂足为d,AD交圆(1)延长BC交AD延长线于P∵AB是直径,AC⊥BC,AC⊥CP,∠ACP=90

如图 ab是圆o的直径 d是弧BC的中点,AD交BC于点E,DG⊥AB,垂足为G,试说明∠BDG=∠BAD,∠DBG=∠

证明:∵AB是圆o的直径∴∠ADB=90°,又DG⊥AB,∴∠DGB=90°∴∠BAD+∠ABD=90°,∠BDG+∠ABD=90°∴∠BDG=∠BAD又∵D是弧BC的中点∴∠DBC=∠DAB(等弧所

如图,AB为圆O的直径,AC为弦D为弧BC的中点,DE⊥AC于E,DE=6,CE=2.求证:1DE是圆O的切线 2求圆o

连接OD交BC于F.连接OC(1)在⊿BOF和⊿COF中因弧BD=弧CD,则∠BOD=∠COD(等弧对等角),即∠BOF=∠COF又OB=OC(半径相等)且OF=OF所以⊿BOF≌⊿COF,得BF=C

AB为圆O直径 BC垂直AB AC交圆O于点D E为BC中点 求证 DE切圆O于点D

连接OD、BD、OM那么角ADB=角CDB=90°而M是中点所以DM=1/2*BC=BM又OB=ODOM=OM所以三角形OBM全等于三角形ODM所以角ODM=角OBM=90°所以DM是切线

如图ab是园o的直径,c为弧ab的中点,d为弧bc的中点,连ad交bc于e则de比ea的值为

ab=2r角dob=45度角dab=45/2=22.5度角adb=67.5度db=2r*sin22.5度角cbd=67.5-45=22.5度de=db*tan22.5度=2r(sin22.5度)^2/

AB为圆心O的直径.D为BC弧的中点.BC交AD于E.DG⊥AB于G.

∵D是AB中点.∴弧CD=弧BD.应该是∠CBD=∠ADB(等弧所对的圆周角相等)∠BDE=∠ADB(同角)△BDE∽△DAB

已知,AB是圆O的直径,C是弧BD的中点,CE⊥AB,垂足为E,BD交CE于点F.若AD=2,圆O的半径为3,求BC的长

证明:连接AC,则∠ACB=90°,易证∠BCF=∠BAC∵C是弧BD的中点∴弧BC=弧CD∴∠BAC=∠CBF∴∠CBF=∠BCF∴BF=CF连接OC,交BD于点M∵C是弧BD的中点∴OC⊥BD则O

在直角三角形abc中角acb等于90度,以ab为直径的圆o交ac于点d,e是bc中点?

直角三角形abc中角acb等于90度,以ab为直径的圆o\过点c,怎会交ac于点d.

如图,AB为圆O的直径,AC为弦D为弧BC的中点,DE⊥AC于E,DE=6,CE=2(1)求证:DE是圆O的切线(2)求

(1)证明:连接BC、ODAB为直径,则∠ACB=90,BC⊥ACDE⊥AC,∴DE‖BCD是弧BC中点,根据垂径定理,OD⊥BC.∴OD⊥DEDE是圆的切线(2)连接AD.∠CDE为弦切角,∠DAE

AB为圆O的直径,D是弧BC中点,DE垂直于AC交AC延长线于E,圆O的切线BF交AD的延长线于F若DE为3圆O半径为5

D是弧BC中点,弧BD=弧DC,所以圆周角BAD=圆周角DAC=角DAE,作DG垂直于AB交AB于G,角DGA=90度;DE垂直于AC交AC延长线于E,故角DEA=90度,角ADG=90度-角BAD;

已知PA⊥圆o所在的平面,AB是圆o的直径,AB=2,C是圆o上一点,且PA=AC=BC,E、F分别为PC,PB中点

只给提示可以吗?因为有些说明很难打.(1)中位线定理.EF是三角形PBC的中位线.(2)由中位线定理知EF||BC,而在圆o中,BC垂直于AC,即得EF垂直于AC;又因为PA垂直于BC,即PA垂直于E

如图,已经△ABC,以AC为直径的圆O交AB于点D,点E为弧AB中点,连结CE交AB于点F,且BF=BC,求证BF是切线

点E为弧AB中点?应该是弧AD吧!连接CD易证三角形ADC为直角三角形,CE平分角ACD所以角FCD+角DFC=90度,角FCD=角ACF,角DFC=角FCB所以角ACF+角FCB=90度所以角ACB

如图AB是圆o的直径,AC为弦,D是弧BC的中点,过点D作EF⊥AC,交AC的延长线于E,交AB的

(1)证明:连接OD,∵D是BC的中点,∴∠BOD=∠A,∴OD∥AC,∵EF⊥AC,∴∠E=90°,∴∠ODF=90°,即EF是⊙O的切线;在△AEF中,∵∠E=90°,sin∠F=13,AE=4,