微分方程dy dx=y x tany x的通解
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 06:50:05
方程两边求关x的导数ddx(xy)=(y+xdydx); ddxex+y=ex+y(1+dydx);所以有 (y+xdy
由微分方程dydx=2xy,得dyy=2xdx(y≠0)两边积分得:ln|y|=x2+C1即y=Cex2(C为任意常数)
dy/y=xdx两边积分:ln|y|=x^2/2+Cy=Ce^(x^2/2)再问:ln|y|=x^2/2+C到y=Ce^(x^2/2)怎么转换再答:|y|=e^(x^2/2)*e^Cy=±e^C*e^
ydy=-2xdx积分y²/2=-x²+C'所以y²=-2x²+C
e^x(y''+y')=x^2e^x(y'e^x)'=x^2e^x两边积分:y'e^x=∫x^2e^xdx=x^2e^x-∫e^x*2xdx=x^2e^x-2xe^x+2∫e^xdx=x^2e^x-2
dy/dx=3y=3x+c
再答:前面打掉了一行,令y“=p
dy/dx=e^(xy)dy/e^y=e^xdx两边积分得-e^(-y)=e^x+C再问:你这样右边是e^(x+y)啊再答:噢令xy=p两边求导得y+xy'=p'y'=(p'-y)/x=(p'-p/x
特征函数r²-1=0r=1或-1那么y=C1e^x+C2e^(-x)C1C2常数
方程两边对x求导得2x+y′x2+y=3x2y+x3y′+cosxy′=2x−(x2+y)(3x2y+cosx)x5+x3y−1由原方程知,x=0时y=1,代入上式得y′|x=0=dydx|x=0=1
dy/dx=-ydy/y=-dx积分:ln|y|=-x+C1得y=C/e^x
直接积分就好了t=1/2*x^2+xy+c,c为常数
即d(xy)=0得xy=C
利用常数变易发公式:阿阿,我不知道怎么打出来--就是y=e的(对1求积分的负号),乘以(对x求积分再乘以e的[对1求积分]最后再加上常数C)整理得到x-1+C
变量分离dy/(ylny)=dxd(lny)/lny=dx(lny)^2/2=x+c
这是一阶线性微分方程,其中P(x)=1,Q(x)=e-x∴通解y=e−∫dx(∫e−x•e∫dxdx+C)=e−x(∫e−x•exdx+C)=e−x(x+C).
dydx要是等式才行吧.如果是的话,这句话就是求这个等式的根,用r表示x.
解题思路:两边同除以xy,再积分即可解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include
∵y'=sin²(x-y+1)==>dy/dx=sin²(x-y+1)==>1-dy/dx=1-sin²(x-y+1)==>(dx-dy)/dx=cos²(x-
在方程ex+y+cos(xy)=0左右两边同时对x求导,得:ex+y(1+y′)-sin(xy)•(y+xy′)=0,化简求得:y′=dydx=ysin(xy)−ex+yex+y−xsin(xy).