AC是圆O的直径,AB,CD是圆O的两条弦,且弧AD=弧BC

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 17:15:05
AC是圆O的直径,AB,CD是圆O的两条弦,且弧AD=弧BC
AB是圆o的直径,AC切圆o与点A,且AC=AB,CD交圆o与点P,CO的延长线叫圆o与点F,BP的延长线交AC与E,连

1、证明:∵AB是圆O的直径∴∠APB=90∵PF是圆O的直径∴∠FAP=90∴∠APB+∠FAP=180∴AF//BE2、证明:∵AC切圆O于A∴∠CAB=90∴∠CAP+∠BAP=90∵OA=OP

(有好评)知AC、AB、BC是圆O的弦,CE是圆O的直径,CD垂直AB于点D.(1)证:

证明:(1)连接BE,CE为直径,则∠CBE=90°.∴∠BEC+∠BCE=90°;又CD垂直AB,则∠CAD+∠ACD=90°.∵∠BEC=∠CAD.(同弧所对的圆周角相等)∴∠ACD=∠BCE.(

如图,AB是圆O直径,C是弧BG的中点,CD垂直AB于D,BG交CD,AC于E,F

证明:(2)连接BC.弧BC=弧GC,则∠CBE=∠BAC.AB为直径,则∠ACB=90°,又CD⊥AB.∴∠BCE=∠BAC(均为∠ACE的余角).∴∠BCE=∠CBE(等量代换),得CE=BE.则

AB是圆O的直径,CD切圆O于C,AD垂直CD于D,求证AC平分角DAB

连接CO两点,可知CO垂直于AB,即AOCD是长方形,再有AO=OC知AOCD是正方形.根据正方形的性质可知AC平分角DAO.证毕.

如图,AB是圆O的直径,若弧CD=弧BD,求证:OD‖AC

证明:连接OC∵AC‖OD∴∠A=∠BOD,∠C=∠COD∵OA=OC∴∠A=∠C∴∠COD=∠BOD∴弧CD=弧BD

已知如图,AB、CE是圆O的直径,CD是圆O的弦,CD‖AB,求证弧EB=弧AC=弧BD

连接OD因为∠AOC=∠EOB,所以弧AC=弧EB因为AB//CD,所以∠EOB=∠ECD因为∠ECD=1/2∠EOD,所以∠EOB=∠BOD,所以弧EB=弧DB所以弧EB=弧AC=弧BD

如图,AB是圆O的直径,AC是弦,CD是圆O的切线,C为切点,AD垂直CD于点D求 AC乘AC等于AB乘AD

在△ABC与△ACD中∵AB为直径,则∠ACB=∠ACC=90°,∠A是公共角∴△ABC∽△ACD,三角形相似比得AC/AB=AD/AC,得AC^2=AB·AD

已知AB是圆O的直径,直线CD与圆O相切于点C,AC平分角DAB

1.证明:连接OC则OA=OC,OC⊥CD∴∠OAC=∠OCA∵AC平分∠DAO∴∠OCA=∠OAC=∠CAD∴AD‖OC∴AD⊥CD2.连接BC∵∠DAC=30°∴∠BAC=30°∵AB是直径∴∠A

AB是圆O的直径,OD平行AC,弧CD和弧BD的大小有什么关系

如图:连接OC∠OAC=∠OCA∵OD‖BD∴∠OCA=∠COD∠OAC=∠BOD∴∠COD=∠BOD∴弧CD=弧BD(在同圆中,相等的圆心角所对的弧相等)

ab是圆o的直径,cd垂直于ab于d,ad=9厘米,db=4厘米,求cd 和ac的长.

连接AC,BC∵AB是直径∴∠ACB=90°∵CD⊥AB∴CD²=AD*BD=9*4=36∴CD=6在△ACD中,AD=9,CD=6根据勾股定理可得AC=3根号13

AB是圆O的直径,C,D是圆O上的两点,且AB=4,AC=CD=1,求BD的长

【标准解答】连接AD,CO,AD和CO相交于E因为AC=CD,AO=DO所以四边形ACDO的对角线AD和CO互相垂直CE^2=AC^2-AE^2,EO^2=AO^2-AE^2,CE+EO=CO=2得A

已知圆O是三角形ABC的外接圆 CD是AB边上的高,AE是圆O的直径.求证:AC*BC=AE*CD

证明:以E为圆心,以BC长为半径画弧交元O于F点.连接EF,FA.则:EF=BC,∠FAE=90°所以:∠EAF=∠DAC (弦相等,弦所对的圆周角相等)所以:RT△ADC∽RT△EFA所以

如图.PAB,PCD是圆O的两割线,AB是圆O的直径,AC平行OD,求证CD=AC

:(1)求证:CD=BD,证明:∵AC∥OD,∴∠1=∠2.∵OA=OD,∴∠2=∠3.∴∠1=∠3.所以狐等∴CD=BD

如图,AB是圆O的直径若弧CD与弧BD相等,则OD//AC,

平行设od垂直平分bc于eoa=obeb=ec所以平行

已知ab为圆o的直径,cd是弦,且ab垂直于点e,连结ac、oc、bc

(1)CE=12OC*OC=CE*CE+OE*OEOE=OB-EB=OC-EB代入的OB=20AB=2*OB=40(2)没看到你的图

如图,在圆O中,AB=AC,AD是圆O的直径.试判断BD与CD

∵AD是直径∴弧ABD=弧ACD∵AB=AC∴弧AB=弧AC∴弧ABD-弧AB=弧ACD-弧AC即弧BD=弧CD∴BD=CD

MN是圆O的直径,AB,CD是弦,MN垂直AB,CD//AB.求证:MN平分CD

连接AO,BO,CO,DO.等腰三角形ABO,由等腰三角形三线合一知MN过圆心O.又MN垂直AB,AB平行CD所以MN垂直CD.等腰三角形CDO,由等腰三角形三线合一知MN就是CD的垂直平分线.

如图已知AB是圆O的直径C是圆O上一点CD⊥AB求证1∠ACD=∠F 2AC

1、连接BC,则∠ACB=90°,∠ABC=∠F,∵∠ACD+∠CAD=90°,∠CAD+∠ABC=90°,∴∠ACD=∠ABC.∴∠ACD=∠F.2、由(1)得出的∠ACD=∠F,又∵∠CAG=∠F

如图,AB是圆O直径,C为圆O上的一点,AD垂直CD,且AC平分角BAD.求证:CD是圆O的切线.如图,AB是圆O直径,

因为AD垂直CD所以角ADC=90度即角DAC+角DCA=90度1式连接OC因为OA=OC所以角CAO=角ACO2式因为AC平分角BAD所以角DAC=角CAB3式由1式2式3式可得角DCA+角ACB=