ac是圆o的直径,ob是圆O的半径,pa切圆O于点A
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 09:54:21
夜猫猫_涵er,(图见参考资料.)1)如图1.连接DE、DF,AD为直径,则∠AED=90°=∠ADB;又∠BAD=∠BAD.则△AED∽△ADB,AD/AE=AB/AD,AD^2=AE×AB⑴;同理
的延长线上取一点E,连接EB,使∠OEB=∠ABC.(1)求证:BE是⊙O的切线(1)证明:∵AB是半圆O的直径,∴∠ACB=90°,∵ODAC,∴∠EDB=90°
证明:(1)因MD与圆O相交于点T,由切割线定理DN2=DT•DM,DN2=DB•DA,得DT•DM=DB•DA,设半径OB=r(r>0),因BD=OB,且BC=OC=r2,则DB•DA=r•3r=3
连接C、D.∵OB⊥AD,若OB=5,且∠CAD=30°,则AB=10,OA=53.∵AD是⊙O的直径,∴∠ACD=90°,∠CAD=30°,∴AD=2OA=103,CD=53,AC=15.∴BC=A
∵∠ADO=2∠A=60°∴∠A=30°∴△ADO为直角三角形∴OB=OA=√3*OD=5√3
、连接MB,角PMN=角MBD又角BMD=角NOD=90所以角MBD=角PNM=角PMN所以PM=PN2、连接OM交BC于E因为∠OMP=90,BC‖MP所以OM垂直BC又角BOM=角MPO所以三角形
根据三角函数(30°三角形的定义)AO=OD=CD=1/2ADAOB相似于ACDAO/AC=OB/CD解上式得AO/AC=OB/AOAO^2=BO*AC因为AC=√3AO=1/2ADAO^2=BO*√
1.证明:连接OC则OA=OC,OC⊥CD∴∠OAC=∠OCA∵AC平分∠DAO∴∠OCA=∠OAC=∠CAD∴AD‖OC∴AD⊥CD2.连接BC∵∠DAC=30°∴∠BAC=30°∵AB是直径∴∠A
∵OC=OD=r/2,OM=ON∴RT△OCM≌RT△ODN(HL)∴CM=DN∵AM=BN,∠CMA=∠DNB=90°∴△AMC≌△BND∴AC=BD
证明:延长CD交圆O于H点,连接AH∵CD垂直圆O的直径AB即CH垂直圆O的直径AB∴弧AC=弧AH(垂径定理:垂直于弦的直径平分弦且平分弦所对的两条弧)从而∠ACH=∠AHC①又∠AFC=∠AHC(
延长CD交圆O于H点,连接AH∵CD垂直圆O的直径AB即CH垂直圆O的直径AB∴弧AC=弧AH 从而∠ACH=∠AHC 又∠AFC=∠AHC由①②得∠ACH=∠AFC即∠AFC=∠
(1)∵AC是圆O的直径∴∠ADC=90°又∵AD⊥BE于G∴∠DGB=90°∴∠ADC+∠DGB=180°∴DC∥BE(同旁内角互补两直线平行)亲啊,我也在找这一题.第二小题我也不会,我作业上只做了
1,易证DO//AC,因为DO为为三角形BCA两腰的等分线,所以由DE⊥AC→DE⊥DO,故DE是圆的切线.2,连AD,则AD是BC的中垂线,所以△ABD≌△ACD,所以∠ABD=∠ACD=30°,C
连接AD,OD,所以OD平行于AC,所以角ADO=角CAD,又因为,角CAD+角ADE=90度,所以角ADE+角ADO=角EDO=90度,所以OD垂直于ED,所以:DE是圆o的切线
证明:连接ON、OM,因为ND垂直OB,且D为OB中点,所以由三角形三线合一可得到ON=BN,而在园中有ON=OB,所以三角形OBN为等边三角形;同理三角形OAM也为等边三角形.从而以得到AM=NB=
∵AD是直径∴弧ABD=弧ACD∵AB=AC∴弧AB=弧AC∴弧ABD-弧AB=弧ACD-弧AC即弧BD=弧CD∴BD=CD
OB不是等于5DC,而是等于0.5DC.证明如下:画个图可以看出,连接DC,则△ACD为直角三角形,∠ACD=90°(直径所对的圆周角为直角),OB⊥AC,则OB‖DC,△ABO∽△ACD,AO/AD
两种可能,B,C在AD同边和异边,异边:角COD=2*角CAD=60度,所以角COB=角COD+角DOB=150度,由余弦公式,BC^2=OC^2+OB^2-2OC*OB*COS150度=50-50*
解题思路:连接OC,由OA=OC,利用等边对等角得到∠OAC=∠OCA,由∠DAC=∠BAC,等量代换得到一对内错角相等,得到AD与OC平行,由AD垂直于EF,得到OC垂直于EF,即可得到EF为圆O的