an绝对值收敛 an也收敛
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 16:21:16
由于级数∑an收敛,所以an->0.于是存在充分大的N,当n>N时,有anN,an^2由于级数收敛只要考虑尾项,而∑an^2的尾项已经被∑an控制住了,所以后者收敛推出前者收敛
这个题很经典的,用基本不等式就可以做.省去下标∑an/n=∑(1/n)*a_n
用比较判别法证明.经济数学团队帮你解答.请及时评价.
利用均值不等式可得an/n小于等于(an^2+1/(n^2))/2,而级数an^2和级数1/(n^2)均收敛,所以由比较原则,级数an/n收敛.用手机打出来的,希望你能看懂,关于级数1/(n^p)当p
先从1到N求和:∑n(an-an-1)=NaN-∑an-1这里求和都是从1开始到N再令N趋于无穷,前面的收敛,后面部分也收敛所以整体收敛
未必.例如 an=[(-1)^n]/√n,则交错级数∑an收敛,但级数 ∑an^2=Σ(1/n)是调和级数,是发散的.
若∑(an平方)收敛,证明∑(an/n)必收敛证明,∑(an)^2收敛,∑(bn)^2=∑(1/n)^2收敛(p级数p>1时收敛)所以∑|anbn|≤∑(1/2)((an)^2+(bn)^2)收敛(因
算术几何均值不等式:|an|/n
∑An-A(n-1)=limAn-A1,所以An极限存在,极限存在的数列必有界设|An|≤M,那么由∑Bn收敛,可以知道∑An*Bn绝对收敛,因此该级数必然收敛
证明:∑an^2收敛,所以,∑|an|收敛,所以,∑|an|/n收敛,所以,∑an/n绝对收敛.
证明正项级数收敛,只需证明其部分和数列有上界显然,正项级数∑(n从1到∞)an收敛,则Sn=a1+a2+...+an有界从而Tn=a1^2+a2^2+.+an^2
不妨设这个数单增,即a1=ank>ak所以数列ak是一个单增有上界的数列,所以收敛.进一步还可以说明ak→
这个是定理啊,大收敛推出小收敛,基本上不用证明.如果非要证也很简单,写一写定义就可以了.再问:老师问我们为什么--我该怎么说求解~再答:你是什么专业的?用e-N定理说一下就出来了。对任意e>0存在N,
根据柯西收敛准则,只需证明|a(n+p)-an|
显然有An>0A(n+1)=√(2+an)=>[A(n+1)]^2=2+An=>[A(n+1)-2][A(n+1)+2]=An-2其中:An>0=>A(n+1)+2>0=>A(n+1)-2与An-2同
再问:可以告诉我图片在哪找的吗?|An|-a=|An-a||An-a|=||An|-|a||不懂、、再答:Mathtype自己编辑再问:对不起,智商不够用,An小于0是什么意思?再答:我是分情况讨论,
an^2收敛说明,an^2有界,就是说存在M>0,使得an^2
例如an=(-1)^(n-1)/n∑a(2n-1)-a(2n)=∑1/n发散∑an+a(n+1)里两个项是同号的,由于∑an收敛,所以∑2an也收敛,并且任意添加括号后也收敛∑2an=2a1+2a2+
按定义将∑n(an-an-1)展开,找到三个级数之间部分和的关系再答:再答:不用客气^_^