ax^2 (a 1)x 6a=0
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 11:09:32
证明:因为β1,β2,β3是a1,a2,a3的线性组合所以β1,β2,β3仍是Ax=0的解.又因为两个向量组的个数相同,所以只需证β1,β2,β3线性无关.(β1,β2,β3)=(a1,a2,a3)K
选B.因为A中的三个向量a1-2a2+a3,-2a1+a2+a3,a1+a2-2a3线性相关.(这个相关性证明可由行列式1-21-21111-2的值为0得出.)
∵抛物线过点(0,-6)∴C=-6由题意得A(-2,6),A1(6,6)代入y=ax^2+bx+c得4a-2b-6=636a+6b-6=6解得a=1,b=-4-b/2a=2,4ac-b²/4
知识点:x是齐次线性方程组Ax=0的解iffx与A的行向量正交所以A的行向量(x1,x2,x3)满足x1+2x3=0x2+2x3=0得基础解系(2,2,-1)^T所以A=(2,2,-1)
a=根号3时a1=150°a=2时直线L2⊥X轴a=-1或a=3时两直线平行a=-1时两直线重合a=3/2时两直线垂直
首先,齐次线性方程组的解的线性组合仍是方程组的解所以,b1,b2,b3是Ax=0的解.还需证两点:1.b1,b2,b3线性无关2.任一解可由b1,b2,b3线性表示事实上这两点可用下方法一次证明出来.
首先,齐次线性方程组的解的线性组合仍是方程组的解所以,b1,b2,b3是Ax=0的解.还需证两点:1.b1,b2,b3线性无关2.任一解可由b1,b2,b3线性表示事实上这两点可用下方法一次证明出来.
告诉你思路,解题过程自己算吧首先:设k1b1+k2b2+k3b3=0把b1,b2,b3代入上式,在利用a1,a2,a3线性无关,可以解出k1=k2=k3=0则b1,b2,b3线性无关再说明a1,a2,
由已知(b1,b2,...,bs)=(a1,a2,...,as)KK=t10...t2t2t1...0...00...t1|K|=t1^n+(-1)^(n-1)t2^n所以当t1^n+(-1)^(n-
能解的.首先利用齐次线性方程组解空间维数定理得到AX=0的基础解系所含向量个数;再利用非齐次方程组的两个解的差是导出组的一个解,得到AX=0的一个基础解系的解向量;而AX=B的通解结构为(AX=B的一
~你好!很高兴为你解答,~如果你认可我的回答,请及时点击【采纳为满意回答】按钮~~手机提问者在客户端右上角评价点“满意”即可.~~你的采纳是我前进的动力~~祝你学习进步!有不明白的可以追问!谢谢!~
首先,非齐次线性方程组的解的差是其导出组的解所以a2-a1,a3-a1是导出组AX=0的解.设k1(a2-a1)+k2(a3-a1)=0则(-k1-k2)a1+k1a2+k2a3=0因为a1,a2,a
易知x1=a1=(1,2,3,4)是一个特解.x2=a2+a3-a1=(0,1,2,3)-(1,2,3,4)=(-1,-1,-1,-1)是一个特解下面求导出组的r(A)=3
当然是D喽,指数形式后面的指数部分不能是小数
因为A1,A2,A3线性无关,且A4=A1-A2+2A3所以A1,A2,A3是A的列向量组的极大无关组所以r(A)=3所以AX=0的基础解系含4-r(A)=1个向量再由A4=A1-A2+2A3知(1,
因为r(A)=3所以AX=0的基础解系含4-r(A)=1个解向量而2a1-(a2+a3)=(2,3,4,5)是AX=0的解,故是基础解系所以AX=b的通解为(1,2,3,4)+c(2,3,4,5).
k(a1-a2)+a1再问:(A)ka1;(B)ka2;(C)k(a1-a2);(D)k(a1+a2)这几个选项选c吗?再答:嗯
通解是x=1/2(a1+a2)+k(a2-a3)=(1,0,2)'+k(1,1,1)',k是任意实数.---------'代表转置再问:为什么,可以讲的详细点么,谢谢啦再问:明天考试了,跪求再答:首先
A=[a1+a2+a3]打错,应该是A=[a1,a2,a3]∵秩A=2∴AX=0的基础解系含3-2=1个解向量.∵a1+a2+a3=0∴X0=﹙1,1,1﹚转置是AX=0的一个非零解.∴方程组AX=0
通解就是所有的解=齐次通解+非齐次的一个特解由a1+2a2-a3=0,齐次的特解为:(1,2,-1)^T(a1,a2,a3的系数)齐次通解为:c(1,2,-1)^T.由向量β=a1+2a2+3a3,得