A^2 A-3E=0设E与A为同阶方阵
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 10:42:41
哎哟妈也线性代数.还是证明题,最受不了这个了.再问:呵呵呵呵呵呵......
(E-A)(E+A+A^2+...+A^K-1)=E+A+A^2+...+A^K-1-(A+A^2+...+A^K)=E-A^k=E所以:E-A可逆,并且(E-A)^-1=E+A+A^2+...+A^
1(A+E)(A^4-A^3+A^2-A+E)=A^5-A^4+A^3-A^2+A+A^4-A^3+A^2-A+E=A^%+E=E所以A+E可逆逆矩阵为A^4-A^3+A^2-A+E(A-E)(A^4
由于(E-A)(E+A)=(E+A)(E-A)=E²-A²=E-A²对(E-A)(E+A)=(E+A)(E-A),两边分别左乘和右乘(E-A)逆有(E+A)(E-A)逆=
可利用特征值如图得出答案是-12.经济数学团队帮你解答,请及时采纳.谢谢!
证明这个矩阵可逆就行了经济数学团队为你解答,有不清楚请追问.请及时评价.
将A^2+2A-4E=0变化为A^2+2A-3E=E,即(A+3E)*(A-E)=E,因为(A-E)可逆,所以A+3E的逆方阵为(A-E)^-1
设λ是A的特征值则λ^2-3λ+2是A^2-3A+2E的特征值.而A^2-3A+2E=0,零矩阵的特征值只能是0所以λ^2-3λ+2=0即(λ-1)(λ-2)=0所以λ=1或λ=2.所以A^-1的特征
因为|A-E|=0所以|E-A|=(-1)^3*|A-E|=0同理|2E-A|=|3E-A|=|E-A|=0由此我们可以知道,矩阵A的三个特征值的为1,2,3(联系矩阵的特征值的求法)所以矩阵A可逆,
你是从数的结论来处理矩阵x^2=0则x=0但矩阵不是这样.A^2=0不一定有A=0如A=0100
由A^2+A-4E=0,所以(A-E)(A+2E)=2E即(A-E)(A/2+E)=E,由逆矩阵的定义可以知道,若在相同数域上存在另一个n阶矩阵B,使得:AB=BA=E.则我们称B是A的逆矩阵,显然(
因为A是三阶方阵,且|A-E|=|A+E|=|A+3E|=0,所以A的特征值为1,-1,-3.从而A^2-2A+3E的特征值为2,6,18,进而|A^2-2A+3E|=2*6*18=216.再问:A^
由A是4阶方阵,且AAT=2E,得|A|^2=|AAT|=|2E|=2^4=16.又由|A|
设a是A的任一一个特征值,则a^2-3a+2=0,从而a=1或2.进而A的特征值为1和2.
因为A^3-A^2+2A-E=0所以A(A^2-A+2E)=E.所以A可逆,其逆为A^2-A+2E.再由A^3-A^2+2A-E=0得(A-E)(-A^2-2E)=E所以A-E可逆,且其逆为-A^2-
这样先证A-4E是可逆矩阵因为A^2-3A-10E=0可以化为(A+E)(A-4E)=6E所以A-4E是可逆矩阵且(A-4E)^(-1)=1/6*(A+E)再证A是可逆矩阵化简A^2-3A-10E=0
由已知,(A-E)(A+2E)=-E所以A-E可逆,且(A-E)^-1=-(A+2E).
首先A^2-5A+6E=E,而A^2-5A+6E可分解为(A-2E)x(A-3E),所以(A-2E)^(-1)=A-3E.
左边的连等式我们可以求出A的三个特征值-1,-2,-3/22A*的特征值是6,3,42A*-3E的特征值是3,0,1,所以2A*-3E的行列式是其三个特征值的乘积,所以是0.
由A^2-A-2E=0可向A(A-E)=2E所以A的逆为(A-E)/2(A-E)的逆为A/2所以A与(A-E)都可逆(A-E)的逆是A/2