A^2-3A 2E=0 (2E-A)(E-A)=(E-A)(E-2A)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 08:06:34
A^2-3A 2E=0 (2E-A)(E-A)=(E-A)(E-2A)
设n阶实方阵A满足A^2-4A+3E=0,证明 B=(2E-A)^T(2E-A)是正定矩阵

因为A^2-4A+3E=0所以A(A-2E)-2(A-2E)-E=0所以(A-2E)(A-2E)=E所以A-2E可逆所以2E-A可逆所以B=(2E-A)^T(2E-A)是正定矩阵--正定合同于单位矩阵

已知三阶矩阵A使得行列式|2A+3E|=|3A+4E|=|4A+5E=0,求行列式|A|

具体的解法在我空间相册里点下面的链接直接进去http://hi.baidu.com/%CE%C4%CF%C9%C1%E9%B6%F9/album/item/9d6b5e191b4f9045dab4bd

设n阶方阵A满足:A^2+2A-3E=0,证明:R(A+3E)+R(A-E)=n

证:R(A+3E)+R(A-E)=R(A+3E)+R(E-A)≥R(A+3E+E-A)=R(4E)=n①A²+2A-3E=0(A+3E)(A-E)=0R(A+3E)+R(A-E)≤n②由①、

若A满足A^2-2A-4E=0,证明A+E与A-3E都可逆,且互为逆矩阵,若A满足A^2+2A+3E=0,证明A是可逆矩

(1)由(A+E)(A-3E)=A²-2A-3E=(A²-2A-4E)+E=0+E=E有A+E与A-3E都可逆,且互为逆矩阵(2)由A^2+2A+3E=0,有A(A+2E)=-3E

A-E A+2E 2A-E为奇异矩阵 求|A+3E|

知识点:1.设f(x)是x的多项式.若a是A的特征值,则f(a)是f(A)的特征值2.A的行列式等于A的全部特征值之积.由A-EA+2E2A-E为奇异矩阵所以|A-E|=0,|A+2E|=0,|2A-

若三阶方阵A满足/A/=/A+2E/=/2A-3E/=0,则/2A+3E/=?

|A+kE|=|A|+kx+k²y+k³|A+2E|=2x+4y+8=0|2A-3E|=8|A+3E/2|=-12x+18y-27=042y+21=0,y=-1/2,x=-3|2A

逆矩阵中A^2+3A-5E=0为什么等于A(A+3E)=5E?

这问题?我有点不敢答了因为A^2+3A-5E=0所以A^2+3A=5E所以A(A+3E)=5E.

A为3阶矩阵,|A-E|=|A-2E|=|A-3E|=0,求|A*-E|

因为|A-E|=0所以|E-A|=(-1)^3*|A-E|=0同理|2E-A|=|3E-A|=|E-A|=0由此我们可以知道,矩阵A的三个特征值的为1,2,3(联系矩阵的特征值的求法)所以矩阵A可逆,

A^2-3A+4E=0,证明:A+E可逆并求其逆矩阵

因为A^2-3A+4E=(A+E)(A-4E)+8E=0所以(A+E)(A-4E)=-8E所以(A+E)[(-1/8)(A-4E)]=E因为|A+E||A-4E|=|-8E|≠0所以|A+E|≠0所以

A为n阶矩阵,A^2-2A+E=0 求A+2E 解:A^2-2A+E=(A+2E-3E)^2=0 则A+2E=3E 这样

你是从数的结论来处理矩阵x^2=0则x=0但矩阵不是这样.A^2=0不一定有A=0如A=0100

线性代数中方阵A满足A^3-2A+E=0,则(A^2-2E)^-1为多少?

可用等式变形凑出逆矩阵为-A.经济数学团队帮你解答,请及时评价.

设A是三阶方阵,且|A-E|=|A+E|=|A+3E|=0,则|A^2-2A+3E|=

因为A是三阶方阵,且|A-E|=|A+E|=|A+3E|=0,所以A的特征值为1,-1,-3.从而A^2-2A+3E的特征值为2,6,18,进而|A^2-2A+3E|=2*6*18=216.再问:A^

若A为三阶方阵,且|A+2E|=0,|2A+E|=0,|3A–4E|=0,则|A|=

根据特征值的意义以及性质,|A+2E|=0可得,有一特征值-2  (特征值的定义)|2A+E|=0 可得,有一特征值-1/2|3A–4E|=0 可得,有一特征值

设方阵A满足A^3-A^2+2A-E=0 ,证明: A及A-E均可逆.

因为A^3-A^2+2A-E=0所以A(A^2-A+2E)=E.所以A可逆,其逆为A^2-A+2E.再由A^3-A^2+2A-E=0得(A-E)(-A^2-2E)=E所以A-E可逆,且其逆为-A^2-

方阵A满足A^2-2A-3E=0,证明A+2E可逆,并求其逆.

因为(A+2E)(A-4E)=-5E右边是可逆矩阵,而且可以写成左边的两个矩阵的乘积,所以根据矩阵乘积的rank(秩)小于等于各乘数矩阵rank的最小值这一原理,左边的两个矩阵都是满秩的,即都是可逆的

设方阵A满足A^2+A-E=0,证明A-E可逆并求出A-E

由已知,(A-E)(A+2E)=-E所以A-E可逆,且(A-E)^-1=-(A+2E).

设A为三阶方阵,且|A+E|=|A+2E|=|2A+3E|=0,则|2A*-3E|=?

左边的连等式我们可以求出A的三个特征值-1,-2,-3/22A*的特征值是6,3,42A*-3E的特征值是3,0,1,所以2A*-3E的行列式是其三个特征值的乘积,所以是0.

设3阶矩阵A满足3E+2A-A^2=0,r(E+A)+r(3E-A)=

3E+2A-A²=0(3E-A)(A+E)=0即R(3E-A)+R(A=E)≤3又因为(3E-A)+(A+E)=2E所以R(3E-A)+R(E+A)≥R(2E)=3最后,所以(3E-A)+R