a^n (1 a^n)收敛性
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 08:45:59
后面的括号如果不是指数的内容的话:若级数收敛,则n趋于无穷时,其通项的极限为0.而lim|(-1)^n(n/2n-1)|=1/2,所以该级数发散.lim下面的打不出来……再问:可以发图写出具体过程吗?
发散,与调和级数比较(用比较审敛法的极限形式).[1/n]/[1/(n+1)]的极限是1,因此这两个级数同敛散,而调和级数发散,所以这个级数发散.
发散,用比较判别法的极限形式.经济数学团队帮你解答.请及时评价.谢谢!再问:如果把n^1/2乘进分子又该怎么算?再答:
比值判别法limn->无穷u(n+1)/un=1/(n+1)!/1/n!=1/n+1=0所以收敛其实这个级数的值就是e
应该是N取0到无穷这个值吧,由于N趋于无穷时任何大于1的数开N次方其值都接近于1,因此结果应该为0.
比较无穷小的阶1/n^21/(n^2-lnn)为同阶无穷小所以原级数与1/n^2敛散性相同.收敛
a1,1/(1+a^n)
这个是收敛的,1/n^+a^<1/n²<1/n(n-1)=1/(n-1)-1/n,n≥2,所以0<∑1/n^+a^<1/(1+a^)+1-1/n,当n趋于无穷,有0<∑1/n^+a^<1/(
该级数发散,分析如图,
1-cos(a/根号n)与a/2n等价.因此,当a=0时,当n趋于无穷大时,通项不趋于零,故级数不收敛.当a不等于0时,因∑a/2n,不收敛,所以级数不收敛.综合,可得,级数不收敛.
级数的通项(n+1)/n^2>n/n^2=1/n,以1/n为通项的级数是发散的,所以根据比较判别法原级数是发散的.
设f(x)=1/|a|^√x,求下限1,上限+∝的反常积分,分成|a|1讨论下,|a|1时利用洛必达法则,能够得到反常积分收敛,而√n全包含于√x,所以原级数在|a|>1时收敛,|a|≤1时发散,过程
该级数收敛1-cosa/n,因为a>0,n充分大之后,a/n趋向于0,cosa/n趋向于1,1-cosa/n单调递减且趋向于0,由莱布尼茨判别法可知,原级数收敛.
sinx-2/Pi*x这个函数,在0和Pi/2都等于0,并且在这个区间上是凹函数,所以大于等于0.
发散,当n→∞时,1/(1+1/n)^n→1/e,不满足级数收敛的必要条件(通项趋于0),故级数发散
由比值判别法得以下全为limn->无穷(u_n+1)/(u_n)=[(n+1)!a^(n+1)/(n+1)^(n+1)]/[n!(a^n)]/(n^n)=a(n/n+1)^n下面求出(n/n+1)^n
在a不等于1时级数收敛,分析如图.再答:
a^n/(1+a^n)=1/(1+(1/a)^n)所以当|a|