A为4阶矩阵,秩为3,且每行元素之和为0,AX=0的通解

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 00:32:37
A为4阶矩阵,秩为3,且每行元素之和为0,AX=0的通解
设A为4阶方阵,且秩R(A)=3,A*为A的伴随矩阵,则R(A*)=

R(A*)=1因为R(A)=3,所以A*不为0矩阵,所以R(A*)>=1AA*=|A|E=0所以R(A)+R(A*)

n阶可逆矩阵每行元素之和均为a,证明:每行元素之和必为1/a

记e=[1,1,...,1]^T,那么Ae=ae,两边同时左乘(aA)^{-1}即得A^{-1}e=a^{-1}e

设A和B为n阶矩阵,且A为对称矩阵,证明B'AB为对称矩阵

证明:因为A是对称矩阵所以A'=A.所以(B'AB)'=B'A'(B')'=B'AB所以B'AB是对称矩阵#

已知A是3阶矩阵,其秩为2,若A重每行元素之和都是零,求其次方程组Ax=0的通解

因为R(A)=2所以AX=0的基础解系含3-2=1个向量因为A的每行元素之和都是零所以A(1,1,...,1)^T=0即(1,1,...,1)^T是AX=0的解所以AX=0的通解为c(1,1,.,1)

A为3x4矩阵,B为4x2矩阵.且乘积矩阵AB=C有意义,则C为什么矩阵

C为3x2矩阵,这个是取头尾,只要相邻的两个数相等乘积就有意义

线性代数:设n元m个方程的齐次线性方程组AX=0的系数矩阵A的秩为n-1,如果矩阵A的每行的元素之和均为0,则线性方程组

系数矩阵A的秩为n-1,则AX=0的基础解系有n-r(A)=1个向量.再由A的每行的元素之和均为0知(1,1,...,1)'是AX=0的一个非零解.所以AX=0的通解是c(1,1,...,1)',c为

A是m*4矩阵,R(A)=3,且A的每行元素之和为0,则齐次线性方程组AX=0的通解是?

R(A)=3,可知通解的基础解系只有一个又A的每行元素之和为0,所以[1,1,1,1]^T是方程的一个解所以方程通解为k[1,1,1,1]^T

设n阶矩阵A是可逆矩阵且A的每行的元素的和是常量a .求证1、a 不等于0 ;2、A的逆矩阵的每行的元素的和为1/a

因为A的每行的元素的和是常量a所以A(1,1,...,1)^T=a(1,1,...,1)^T即a是A特征值而A的所有特征值的乘积等于|A|,由A可逆,|A|≠0所以a≠0.A^-1的特征值是1/a,对

两个关于矩阵的问题如果一个实矩阵满足对角元大于0,其余元均小于0,且每一行和为0,求其秩A和B是实矩阵,且存在C和D,使

1.设该矩阵为M,n行n列.由于该矩阵的元素性质,他的左上角的n-1行n-1列的子矩阵是严格对角占优的(即对角元的绝对值大于该行其他元的绝对值的和,严格对角占优的矩阵非退化),从而M的秩>=n-1.但

设A为四阶矩阵,且|A|=-3,则|2A^*+4A^-1|=

再问:额哥们选择题没这个答案啊再答:哦,不好意思,倒数第二行把2/3写成4/3了,最后答案是-16/3,不错的。

设A为4阶矩阵,且1,2,3,4为矩阵A的特征值,求2A2+3A+E的行列式

A的全部特征值为1,2,3,4所以2A^2+3A+E的特征值为5,11,19,29所以|2A^2+3A+E|=30305.注:若λ是A的特征值,则f(λ)是f(A)的特征值.这里f(x)=x^2+3*

设n阶可逆矩阵A中每行之和元素为常数a,证明A^(-1)的每行元素之和为a^(-1)

证明:令列向量x=(11.1)^-1则由题意可知Ax=(aa.a)^-1上式两边同乘A^-1可得x=A^(-1)*(aa……a)^-1,两边同除a得(1/a)x=A^(-1)(11.1)^(-1)积(

设矩阵A和P都是n阶矩阵,且A为对称矩阵,证明:P^TAP也是对称矩阵

再答:判断矩阵B是不是对称的,就验证B的转置和它本身是否相等。再问:给力

设A为4阶矩阵,A*为A的伴随矩阵,且{A}=1/2,则{(3A)^-1-2A*}=?

啊哈,我就做做看,不知道对不对呐,高等代数学的不是很好.d=A的模=1/2,A的模乘以A^-1的模=E的模=1,A^-1=1/dA*,所以原式等于3A^-1-2(dA-1)=2A^-1=2乘以2=4

已知A是m*4阶矩阵,R(A)=3,且A的每行元素之和等于零,则齐次线性方程组AX=0的通解为

各行元素之和为零的含义如图,可以凑出一个基础解系.经济数学团队帮你解答,请及时采纳.

设A为3*4矩阵,B为5*2矩阵且乘积矩阵ACtBt有意义,则C为()矩阵?

两个矩阵相乘有意义的条件是:前一个矩阵的列数等于后一个矩阵的行数例如:A[m*n]B[n*k]=C[m*k]即m行n列矩阵乘以n行k列矩阵得到m行k列矩阵所以由上得知,C行数等于A列数等于4(AC有意

设A为n阶实对称矩阵,且满足A^3-2A^2+4A-3E=O,证明A为正定矩阵

设λ是A的特征值则λ^3-2λ^2+4λ-3是A^3-2A^2+4A-3E的特征值而A^3-2A^2+4A-3E=0,零矩阵的特征值只能是0所以λ^3-2λ^2+4λ-3=0.λ^3-2λ^2+4λ-

线性代数问题设A为3阶实对称矩阵,且主对角元全为0,B=diag(0,1,2),求使AB+I为可逆矩阵的条件.

A为实对称矩阵,且对角线全为0,设A为:A=0aba0cbc0B=000010002I=100010001AB=0a2b002c0c0AB+I=1a2b012c0c1对AB+I进行初等行变换,化成阶梯

设A为四阶矩阵,且|A|=3,求A的秩?

秩为四啊[A]不等于零,就是满秩四阶,就是四