a为n阶方阵,a2=3a则(a-4e)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 18:27:45
由A^2=A知道A的特征值只能是1和0若|A+E|=0,则-1是其特征值,这不可能所以|A+E|≠0,即可逆
由题:A^2-3A=0(这里的0,表示n阶0矩阵,以下同)得到:A(A-3E)=0由于A≠0,因此A-3E=0,0矩阵不可逆,从而A-3E不可逆!
证明:因为A2=E,所以0=(A-E)(A+E)所以0=r((A+E)(A-E))≥r(A+E)+r(A-E)-n所以r(A+E)+r(A-E)≤n又因为r(A+E)+r(A-E)=r(A+E)+r(
因为:A2=A,所以:A(A-E)=0,则:r(A)+r(A-E)≤n,又因为:r(A)+r(A-E)=r(A)+r(E-A)≥r(A+E-A)=r(E)=n,所以:r(A)+r(A-E)=n,则:r
n-1方阵A相似于一个若尔当矩阵J(上三角阵)J的主对角元都是特征值,“恰好”有一个特征值是0说明J的某一行全为零其他的行都不为0.所以说矩阵的秩就是n-1
反证法若A是可逆矩阵,则A×A逆=EA=A×A×A逆=A×A逆=E矛盾
1.你的A2=0,是不是A的平方的意思,即A^2,假如是这样:分析:A^2=A*A=0两边取行列式:|A^2|=|A*A|=|A|*|A|=0得:|A|=0一个矩阵的行列式=0,不一定有这个矩阵是0矩
求法很多,用一种最简单的:根据秩的不等式:R(A)+R(A-E)-n≤R[A(A-E)]=R(A^2-A)又因为:A^2=A,即A^2-A=0(零阵)因此:R(A)+R(A-E)-n≤R[A(A-E)
E=E-A^3=(E-A)(E+A+A^2)由AB=E得A^-1=B则(E-A)(E+A+A^2)=E得到(E-A)^-1=E+A+A^2
detA=0再问:为啥啊??我就是不知道为什么?再答:如果detA≠0那么方程AX=b又唯一解而现在有2个解了,所以detA=0
|A3,A2,4A1|=-|4A1,A2,A3|=-4|A1,A2,A3|=16
设B为A的伴随矩阵,E为单位阵,AB=|A|E,|A||B|=|A|^n,|B|=|A|^(n-1)
A=A^2A^2-A=0A^2-2A=-AA(A-2E)=-AA-2E=-E(A-2E)*(-E)=E所以:(A-2E)^-1=-E
因为|5A+3E|=0,所以|A-(-3/5)E|=0,从而-3/5是A的一个特征值.
A^2-3A+E=03A-A^2=E(3E-A)A==EA^(-1)=3E-A
由A^2-A-7E=0得:A(A-1)=7E故A(A-1)的行列式为7而不为0,假如A是不可逆矩阵,则A的行列式为0那么A(A-1)的行列式就为0矛盾,所以A可逆又原式可变为(A+2E)(A-3E)=
这是一个基本公式,AA*=A*A=|A|E,其中E是单位阵.经济数学团队帮你解答,请及时采纳.
A1,A2,A3是矩阵A的3个列向量,关系其实你已经写出来了,就是A=(A1,A2,A3)或者你也可以写成A=(A1,O,O)+(O,A2,O)+(0,0,A3)|3A1,A2,3A3|为什么可以把两
是等于0的.如果是填空选择,你可以举个例子,比如a=(1,1).详细的证明就不写的,你会发现A的每一行(列)都是成比例的,所以其对应的行列式为0