扇形OAB中,角oab的90°,oa=2,p是ab上

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 01:38:13
扇形OAB中,角oab的90°,oa=2,p是ab上
如图,圆心角都是90°的扇形OAB与扇形OCD叠放在一起,连接AC,BD.

(1)证明:∵∠AOB=∠COD=90°,∴∠AOC+∠AOD=∠BOD+∠AOD;∴∠AOC=∠BOD;在△AOC和△BOD中,∵OA=OB∠AOC=∠BODCO=DO,∴△AOC≌△BOD(SAS

如图:扇形OAB的圆心角∠AOB=120°,半径OA=6cm,

(1)如图所示:(2)扇形的圆心角是120°,半径为6cm,则扇形的弧长是:nπr180=120•π•6180=4π则圆锥的底面周长等于侧面展开图的扇形弧长是4π,设圆锥的底面半径是r,则2πr=4π

圆心角都是90°的扇形OAB与扇形OCD如图所示那样叠放在一起,连接AC、BD.

(1)证明:∵∠COD=∠AOB=90°,∴∠AOC+∠AOD=∠AOD+∠BOD,∴∠AOC=∠BOD,又∵OA=OB,OC=OD,∴△AOC≌△BOD;(3分)(2)S阴影=S扇形AOB-S扇形C

如图,扇形OAB,∠AOB=90°,⊙P与OA、OB分别相切于点F、E,并且与弧AB切于点C,则扇形OAB的面积与⊙P的

连接OC,PE.设PE为1,易得OP=2,那么OC=2+1.∴扇形OAB的面积=90×π(2+1)2360;⊙P的面积=π,∴扇形OAB的面积与⊙P的面积比是3+224.再问:为什么“S扇=π/4*(

如图,圆心角都是90°的扇形OAB与扇形OCD叠放在一起,OA=3,OC=1,分别连结AC、BD,则

S⊿OAC=S⊿OBD(旋转90°重合)阴影面积=OAB+OBD-OAC-OCD=OAB-OCD=(9π-π)/4=2π(面积单位)

如图扇形OAB的圆心角是扇形OCD的三倍,而扇形OCD的半径是扇形OAB的两倍,若∠AOB=90°,OAECDFBO围成

设OA=r,S总=20=S(OAB)+S(OCD)-S(OEF)=1/4*3.14*r*r+1/12*3.14*(2r)*(2r)-1/12*3.14*r*r=1/2*3.14*r*r所以r=3.57

在扇形OAB中,半径OA=8cm,弧AB=12,则角AOB=____弧度,扇形OAB的面积

圆心角的弧度数=弧长/半径,因此角AOB=12/8=1.5弧度.填:1.5.而扇形的面积=1/2*弧长*半径=1/2*12*8=48cm^2.

21.圆心角都是90°的扇形OAB与扇形OCD如图所示那样叠放在一起,连接AC、BD.

设弧CD与AO交于N点,由图可知:阴影部分ACN面积=△ACO面积-扇形OCN面积,阴影部分ABDN面积=扇形OAB面积-△BDO面积-扇形ODN面积.则总阴影面积=阴影部分ACN面积+阴影部分ABD

在半径为2的扇形OAB中角AOB等于90度点C是弧上的一个动点不与AB重合OD垂直BC

如图,在半径为2的扇形AOB中,∠AOB=90°,点C是弧AB上的一个动点(不与点A、B重合)OD⊥BC,OE⊥AC,垂足分别为D、E.(1)当BC=1时,求线段OD的长;(2)在△DOE中是否存在长

扇形OAB的圆心角是90°,分别以OA,OB为直径在扇形内作半圆,则S1,S2两部分图形的面积大小

若设s1和s2的交点是P,可知APB是直线(因为角OPB=角OPA=90)则S1=半圆ABP的面积-三角形APB的面积接着就能算S2的面积了

如图,圆心角都是90°的扇形OAB于扇形OCD叠放在一起,连接AC,BD,OA=3,OC=1,求阴影部分的面积

是求曲边四边形ABDC的面积吧?试解如下,s扇形OAB=90π×3²/360=9π/4.s扇形OCD=90π×1/360=π/4,所以s阴影=s扇形OAB-s扇形PCD=9π/4-π/4=2

如图,圆心角都是90°的扇形OAB与扇形OCD叠放在一起,连接AC,BD.

(1)∵∠COD=∠AOB=90°∴∠AOC=∠BOD∵AO=BOCO=DO∴△AOC≌△BOD∴AC=BD(2)把△AOC内的阴影部分旋转到△BOD内,阴影部分就是一个扇环.则:阴影面积=扇形ABO

圆心角都是90°的扇形OAB与扇形OCD叠放在一起,连接AC,BD.

1,用全等三角形来证,关键条件——两边一角(oc=od;oa=ob;∠aoc=∠bod)具体略,自行完成——不会很难吧2,关键点——利用全等三角形面积相等列等式阴影部分面积=总面积-三角形OBD-扇形

如图,在扇形OAB中,∠AOB=90°,半径OA=6,将扇形OAB沿过点B的直线折叠,点O恰好落在弧AB上点D处,折痕交

连接OD,教CB于点H,OD为半径,所以OD=6.三角形OBC与CBD全等,所以OH=HD=3.在直角三角形中根据勾股定理可得HB=3√3.又三角形CHD与BHD相似,所以根据等比三角形的性质可得CD

扇形OAB中,∠AOB=90°,⊙P与OA、OB分别相切于点F、E,并且弧AB切于点C,则扇形OAB面积与⊙P的面积比是

设扇形的半径为rOP=根号2×PF=根号2×PC又:OP+PC=OC=r得(根号2+1)×PC=r,PF=r/(根号2+1)扇形AOB面积:πr^2/4圆P面积:π[r/(根号2+1)]^2(πr^2

如图,在扇形OAB中,∠AOB=90°,半径=6.将扇形OAB沿过点B的直线折叠.点O恰好落在弧AB上点D处,折痕交OA

周长C阴影=弧AD+弧BD+AC+CD+BD∵OC=CD∴AC+CD=AC+CO=OA=6∵BD=OB∴BD=6∴弧ADB=(90°*π*6)/180=3π∴C阴影=12+3π面积S扇形OAB=(90

在扇形OAB中,∠AOB=90°,半径OA=6.将扇形OAB沿过点B的直线折叠.点O恰好落在弧AB上点D处,折痕交OA&

周长C阴影=弧AD+弧BD+AC+CD+BD∵OC=CD∴AC+CD=AC+CO=OA=6∵BD=OB∴BD=6∴弧ADB=(90°*π*6)/180=3π∴C阴影=12+3π面积S扇形OAB=(90

扇形OAB的圆心角为90°,四边形OCDE是边长为1的正方形

连接OD.题意得OC=CD=DE=EO=1,OA=OD=OE=根号2∴AC=根号2-1S扇形OBD=45π(根号2)²/360=π/4故S阴影=(根号2-1)*1+π/4-1/2*1*1=根