把函数f(x)=(1-x)ln(1 x)展开成x的幂级数

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 19:22:24
把函数f(x)=(1-x)ln(1 x)展开成x的幂级数
函数f(x)=ln(1+x)的定义域

再答:对数函数的真数恒正x+1>0所以定义域为x>-1再问:已知i是虚数单位,若(m+i)^2=3-4i,则实数m的值为再答:再答:别只看答案,看看过程,那里不懂问问,超个答案下次还不会哦再问:能再问

导数题:已知函数F(x - 1/x)=ln x ,求F(x)的导数.

X-1/X=YXY=X-1X-XY=1X=1/1-YF(X)=LN(1/1-X)F'(x)=1/(1-x)

已知函数f(x)=ln(ax)/(x+1) - ln(ax) + ln(x+1),(a不等于0且为R) 1.求函数f(x

1.x+1>0,ax>0a>0时,x>0;a再问:.f'(x)=-lnax/(x+1)2-lnax不对啊..f(x)=ln(ax)/(x+1)-ln(ax)+ln(x+1)求导为什么是这个啊再答:求导

设函数f(x)=ln(x+a)+x^2.

x1+x2=-ax1*x2=1/2,由此式看出x1,x2同号(1)当a0所以x1,x2都是正数那么x1加上一个正数等于-a所以x1必然小于-a同理x20即x>-a所以在定义域内不存在x使f'(x)=0

已知函数f(x)=ln(x+1)+ax

f'(x)=1/(x+1)+a>=2xa>=2x+1/(x+1)g(x)=2x+1/(x+1)g'(x)=2-1/(x+1)²1

已知函数f(x)=ln(x+1),

①f(x)=ln(x+1)定义域(-1,+∞)f(0)=0在(0,+∞)存在一点ε,0<ε<1/xf(1/x)-f(0)=f'(ε)(1/x-0)f'(x)=1/(x+1)∵0<ε<1/x∴1/(1/

已知函数f(x)=ln^2(1+x)-[x^2/(1+x)],求函数f(x)的极值

对f(x)求导得[2(1+x)㏑(1+x)-2x-x²]/(1+x)²,设分子为h(x),对其求导得2㏑(1+x)-2x㏑(1+x)≤x恒成立,所以h(x)单调递减,h(0)=0,

求达人解四道函数题1.f(x)=4ln(6x+5ln(x)) f'(x)=?f'(4)=?2.f(x)=4ln(ln(x

首先要知道(lnx)'=1/x,然后一步一步求1.f'(x)=4*[1/(6x+5lnx)]*(6+5/x),f'(4)就把x=4带入2.f'(x)=4*(1/lnx)*(1/x)(a^x)'=lna

f(x)=ln(x+1)的导函数?f(x)=ln(2x+1)的导函数?

f(x)=ln(x+1)的导函数f'(x)=1/(x+1)f(x)=ln(2x+1)的导函数f'(x)=1/(2x+1)*(2x+1)'=2/(2x+1)

已知函数f(x)=2ln(x)-x^2.

题目:已知函数f(x)=2lnx-x^2.如果函数g(x)=f(x)-ax的图像与x轴交于两点A(x1,0),B(x2,0),且00上单调递减,得g'(px1+qx2)=0成立.结合已知可得2lnx1

设函数f(x)=x-(x+1)ln(x+1)(x>-1)

1)f'(x)=-ln(x+1)所以f在(-1,0]上严格单调递增,[0,正无穷)上严格单调递减从而f的最大值为0且对任意x>0,f(x)

已知函数f(x)=e^x-ln(x+1).

1.f'(x)=e^x-1/(x+1),f'(0)=0,f''(x)=e^x+1/(x+1)^2>0,f'(x)为(-1,+∞)上的增函数,所以x>0时,f'(x)>f'(0)=0,f(x)在(0,+

f(x)=ln(x+1),对此函数求导,

f(x)=ln(x+1),则:f'(x)=[1/(x+1)]×(x+1)'.=[1/(x+1)]×1.=1/(x+1)

f(x)=ln(1+x)/x //ln(1+x)

楼主这么晚还没休息啊我想请问一下楼主的f(x)=ln(1+x)/x//ln(1+x)是从网上看到的?还是从书本上看到的?而且,我认为,楼主f(x)=ln(1+x)/x//ln(1+x)打多了一个除号,

已知函数f(x)=ln(1+x)x.

(1)由已知函数求导得f′(x)=xx+1−ln(1+x)x2设g(x)=xx+1−ln(1+x),则g′(x)=1(x+1)2−1x+1=−x(x+1)2<0∴g(x)在(0,+∞)上递减,g(x)

已知函数f(x)=ln(x+x

f(-x)=ln(-x+x2+1)=ln(1x+x2+1)=-f(x),故f(x)为奇函数,则有f(-a)=-f(a),又由题意f(a)+f(b-1)=0,可得f(b-1)=-f(a)=f(-a),则