把函数f(x)=ln(1 x x^2 x^3)展开成x的幂级数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 19:15:19
解方程x2-|x-1|-1=0
再答:对数函数的真数恒正x+1>0所以定义域为x>-1再问:已知i是虚数单位,若(m+i)^2=3-4i,则实数m的值为再答:再答:别只看答案,看看过程,那里不懂问问,超个答案下次还不会哦再问:能再问
X-1/X=YXY=X-1X-XY=1X=1/1-YF(X)=LN(1/1-X)F'(x)=1/(1-x)
1.x+1>0,ax>0a>0时,x>0;a再问:.f'(x)=-lnax/(x+1)2-lnax不对啊..f(x)=ln(ax)/(x+1)-ln(ax)+ln(x+1)求导为什么是这个啊再答:求导
应该是ln|x+1|验证这个公式时要分情况.之所以不取ln(x+1),是因为对被积函数来说,除x=-1外都有意义,而ln(x+1)仅对x>-1才有意义,但事实上x
因为函数f(x)=ln(x2+x+1-x2-x+1)=ln((x+12)2+(0-32)2-(x-12)2+(0-32)2),真数的值可看作在x轴上一点P(x,0)到点(-12,32)与点(12,32
f′(x)=(x−1)−x(x−1)2=−1(x−1)2,当x∈[2,5]时,f′(x)<0,所以f(x)=xx−1在[2,5]上是减函数,所以f(x)的最大值为f(2)=22−1=2,最小值为f(5
f'(x)=1/(x+1)+a>=2xa>=2x+1/(x+1)g(x)=2x+1/(x+1)g'(x)=2-1/(x+1)²1
①f(x)=ln(x+1)定义域(-1,+∞)f(0)=0在(0,+∞)存在一点ε,0<ε<1/xf(1/x)-f(0)=f'(ε)(1/x-0)f'(x)=1/(x+1)∵0<ε<1/x∴1/(1/
首先要知道(lnx)'=1/x,然后一步一步求1.f'(x)=4*[1/(6x+5lnx)]*(6+5/x),f'(4)就把x=4带入2.f'(x)=4*(1/lnx)*(1/x)(a^x)'=lna
(1)证明:设x1,x2为区间(1,+∞)上的任意两个实数,且1<x1<x2,则f(x1)-f(x2)=x1x1−1-x2x2−1=x2−x1(x1−1)(x2−1)∵1<x1<x2,∴x2-x1>0
根据题意,有x≥0,则f(x)=xx+1=1x+1x而x+1x≥ 2则f(x)≤12,故答案为12.
f(x)=ln(x+1)的导函数f'(x)=1/(x+1)f(x)=ln(2x+1)的导函数f'(x)=1/(2x+1)*(2x+1)'=2/(2x+1)
1)f'(x)=-ln(x+1)所以f在(-1,0]上严格单调递增,[0,正无穷)上严格单调递减从而f的最大值为0且对任意x>0,f(x)
请参考:由函数f(x)=2f'(1)x-ln(x+1),因f'(1)是一个确定的导数值,是一常数,可令为a,即a=f'(1),由此有:f(x)=2ax-ln(x+1),f'(x)=2a-1/(x+1)
1.f'(x)=e^x-1/(x+1),f'(0)=0,f''(x)=e^x+1/(x+1)^2>0,f'(x)为(-1,+∞)上的增函数,所以x>0时,f'(x)>f'(0)=0,f(x)在(0,+
由2−xx−1≥0,得1<x≤2,即A={x|1<x≤2}.∵y=3x是R上的增函数,∴由32ax<3a+x,得2ax<a+x,∴B={x|(2a-1)x<a},(1)当2a-1>0,即a>12时,B
f(x)=ln(x+1),则:f'(x)=[1/(x+1)]×(x+1)'.=[1/(x+1)]×1.=1/(x+1)
由ln(x+1)得x+1>0得x>-1x为分母故不等于0定义域为x>-1且x≠0
楼主这么晚还没休息啊我想请问一下楼主的f(x)=ln(1+x)/x//ln(1+x)是从网上看到的?还是从书本上看到的?而且,我认为,楼主f(x)=ln(1+x)/x//ln(1+x)打多了一个除号,