抛物线y ^2=2px,与直线y=x 1相切
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 08:16:03
直线为为y=x-p/2直接用抛物线第一定义,准线为x=-p/2AB=AF+BF=x1+p/2+x2+p/2=x1+x2+pAB=4,所以x1+x2+p=4x=y+p/2带入y^2=2px,有y^2=2
抛物线C2:y^2=2px(p>0),此抛物线焦点坐标F2为:(p/2,0),抛物线C1:y=ax^2+bx,此抛物线焦点坐标F1为:[-b/2a,(4ac-b^2+1)/4a]∵抛物线C1:y=ax
由题意可设抛物线的方程y2=2px(p≠0),直线与抛物线交与A(x1,y1),B(x2,y2)联立方程y2=2pxy=2x+1可得,4x2+(4-2p)x+1=0则x1+x2=12p-1,x1x2=
要证明以AB为直径的圆必与抛物线的准线相切,就要满足圆心O到准线的距离为AB一半(即半径).已知A(X1,Y1),B(X2,Y2),设焦点为F因为抛物线上任一点到焦点的距离等于其到准线的距离所以AB=
焦点为(p/2,0),准线为x=—p/2记两交点坐标为(x1,y1),(x2,y2)则|FP|=x1+p/2|FQ|=x2+p/2(到焦点的距离等于到准线的距离)y1/(x1-p/2)=y2/(x2-
对于抛物线y²=2px焦点为(p/2,0)设直线AB为x=my+p/2代入y²=2p(my+p/2)y²-2pmy-p²=0设A,B的坐标(x1,y1)(x2,
过点P1作P1Q1垂直准线于点Q1过点P2作P2Q2垂直准线于点Q2则:P1Q1+P2Q2=P1F+P2F=PP2即梯形P1Q1Q2P2的中位线等于P1P2的一半,即:P1P2的中点到准线的距离等于P
看得出你思路是利用向量相乘等于0,再利用维达定理,带入使等式为0.向量FM1和向量FM2是不是表示错了?应该用末点坐标减去初始点坐标,向量FM1=(x1-p/2,y1)
题目有误,请改正.再问:双曲线改为x^2-y^2/3=1再答:(1)F(1,0),抛物线方程是y^2=4x,①(2)把l:y=k(x-2),即x=my+2,②其中m=1/k,代入①,得y^2-4my-
答:抛物线y^2=2px(p>0)的焦点F为(p/2,0)直线x-my+m=0经过焦点:p/2-0+m=0,m=-p/2再问:好聪明啊,谢谢!
设抛物线y²=2px(p>0),焦点坐标为F(p/2,0),A(x1,y1),B(x2,y2),过点F的直线方程为x=my+(p/2),代入y²=2px,得y²=2pmy
将A(1,2)带入ax+y-4=0和y2=2px得出p=2a=2将两式连立得出另一个交点(4,-4)
j结果是2倍根号5除以5.将(1,2)先代入y^2=2px.求出p=2.即可知抛物线焦点为(1,0).再代入直线方程,为2x+y-4=0.然后是点到直线公式的应用.用Word文档的特殊公式粘不过来.所
答:①焦点x轴上设抛物线方程:y²=2px判断焦点(p/2,0)点②设A点坐标(x1,y1),B点坐标(x2,y2)设AB斜率k线段AB垂直平分线斜率k'则:kk'=-1所:(y1-y2)/
设抛物线y²=2px(p>0),焦点坐标为F(p/2,0),A(x1,y1),B(x2,y2),过点F的直线方程为x=my+(p/2),代入y²=2px,得y²=2pmy
凡是看到"弦中点".99%的可能性考这样的方法:点差法设交点为(x1,y1)和(x2,y2)都在抛物线上,那么y1²=2px1y2²=2px2两式相减得到(y1-y2)(y1+y2
x=1/2的一条直线
解方程组y²=2pxy=x得y^2=2pyy=0y=p所以交点为(0,0)和(p,p)因为P(2,2)为AB的中点所以(0+p)/2=2p=4
用抛物线的第二定义.