抛物线y^2=4x焦点F,过F的直线l与抛物线交于A,B两点,如AF=3BF

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 23:50:41
抛物线y^2=4x焦点F,过F的直线l与抛物线交于A,B两点,如AF=3BF
抛物线x^2=4y,焦点F,A,B为过F与抛物线的交点,过A,B作抛物线切线交点为M,证向量FM×AB为定值

易知,点F(0,1).可设点A(2a,a^2),B(2b,b^2).(a≠b).由A,F,B三点共线知,ab=-1.易知,过点A,B的抛物线y^2=4x的切线方程分别是ax-y=a^2,bx-y=b^

给定抛物线C:Y平方=4X,F是C的焦点,过点给定抛物线C:Y平方=4X,F是C的焦点,过点F的直线l与C相交于A B

用极坐标解抛物线方程:ρ=2/(1-cosθ)设|AF|=2/(1-cosα),α∈[0,2π)则|BF|=2/(1+cosα)|FB|/|AF|=(1-cosα)/(1+cosα)=-1+2/(1+

设抛物线G:y^2=4x的焦点F,过点P(-n,0)(n∈N+)作抛物线G的切线,求切线方程

你要找最简便的方法,还是求导最快用判别式计算起来不好算设切点为A(x1,y1)x=y^2/4x'=y/2(x1+n)/y1=y1/2(y1/2是斜率的倒数)y1^2=2x1+2n4x1=2x1+2nx

过抛物线X^2=4Y的焦点f作直线交抛物线于ab两点,则弦ab的中点M的轨迹方程?

抛物线X^2=4Y的焦点f(1,0)设a(x1,y1)b(x2,y2)弦ab的中点M(x,y)x1^2=4y1,x2^2=4y2k=(y1-y2)/(x1-x2)=(x1+x2)/4=2x/4=x/2

设F抛物线y^2=4x的焦点,过点F作直线交抛物线于MN两点,则三角形MON的面积最小值是

分析:高是不变的,为OF=1.使S△MON最小,既使MN最小.当MN垂直于X轴时,MN最小,MN=4.所以三角形MON的面积最小值是=1/2*1*4=2

已知抛物线C:y^2=4x的焦点为F,过F且斜率为1的直线与抛物线C交于A、B两点

答:(1)抛物线y^2=4x的焦点F为(1,0),准线为x=-1,AB直线为:y-0=1*(x-1),即:y=x-1代入抛物线方程整理得:x^2-6x+1=0根据韦达定理:x1+x2=-b/a=6,x

已知过抛物线y^2=4x的焦点F的直线交抛物线为A、B两点,AF=2,则BF=

F(1,0),准线:x=-1.设A(x1,y1),则AF=x1+1=2,x1=1,∴AF:x=1,∴BF=AF=2.

已知抛物线y∧2=4x的焦点为F.过F的直线l与抛物线交A(x1,x1)B(x2,y2) 两点.T为准线与x轴焦点.现在

设l:x=my+1,与抛物线方程联立消x,可得y1*y2,y1+y2,再可得x1*x2.x1+x2,向量TA·向量TB=1用x1x2y1y2表示可得m,1/m即为斜率

抛物线y^2=4x的焦点为f,过f的直线交抛物线于a(x1,y1),b(x2,y2)两点,则y1y2/x1x2=

解据题意抛物线焦点为(1,0)当过焦点的直线斜率不存在时,直线方程为x=1则x1=1,x2=1,y1=2,y2=-2y1y2/x1x2=-4当直线斜率存在时,设为k则直线方程为y=k(x-1)那么y1

已知抛物线y^2=4x的焦点为F,过焦点F的直线交于抛物线于A,B两点,且A在第一象限,

(1)F(1,0)AB过F点设直线AB:x=my+1设A(x1,y1),B(x2,y2)x=my+1代入y^2=4x得y^2-4my-4=0△AOB面积=1/2*OF*|y1-y2|=1/2*√[(y

过抛物线y^2=4x的焦点F的直线L与这条抛物线交于A.B两点,O为坐标原点

1.设A、B、G坐标为(x1,y1)(x2,y2)(x3,y3)L为y=kx-k(k≠0)3x3=x1+x23y3=y1+y2将直线方程代入抛物线方程得:ky^2-4y-4k=04(x1+x2)=y1

已知过抛物线y的平方=4x的焦点F的直线交该抛物线于A,B两点,|AF|=2,则|BF|=?

焦点为(1,0)焦距为1所以都为2再问:焦点不是2,0吗?再答:不是,Y的平方=2PX焦点为(p,0)现在2P等于4所以要除4所以为(1,0)所有y的平方=aX焦点都为(a/4,0)再问:为什么都为2

已知抛物线y^2=4x,F为抛物线的焦点且PQ为过焦点的弦,若|PQ|=8求△OPQ的面积

面积为4乘以根号2,.设x=ky+1,代入抛物线方程PQ可用k表示,求得k的平方为1.面积就出来了我做了,你也要做一下哦有问题,可以问我

设过抛物线x^2=4y的焦点F的直线交抛物线于A ,B两点,则线段AB的轨迹方程

焦点F(0,1)A(x1,y1)B(x2,y2)设直线方程y=kx+1代入x^2=4yx^2-4kx-4=0x1+x2=4k中点的横坐标x=2kk=x/2y1+y2=k(x1+x2)+2=2k^2+2

已知抛物线y^2=4x,焦点F

F(1,0)由于AB不可能平行y轴,可设AB:ky=x-1(x-1)^2=y^2k^2=4xk^2x^2-(2+4k^2)x+1=04=x1+x2=2+4k^2k=根号2/2x^2-4x+1=0|x1

已知抛物线c:y^2=4x的焦点为F,过F的直线l与c相交于两点A、B 求|AB|最小值

焦点F为(1,0)当斜率不存在时,AB为通径,|AB|=4当斜率存在时,设直线l的斜率为k,A、B坐标为(x1,y1),(x2,y2)则直线l:y=k(x-1)联立y^2=4x得k^2x^2-(2k^

抛物线x^2=4y 的焦点为F,过点(0,-1)作直线L交抛物线A、B两点,求AB中点的轨迹方程

设直线的斜率为k则直线的方程为y=kx-1同时设直线与抛物线的交A、B点坐标分别为(x1,y1)(x2,y2)A、B中点为(x0,y0)显然:x0=(x1+x2)/2yo=(y1+y2)/2同时有x1

抛物线C:y^2=4x,F是C的焦点,过点F且斜率为1的直线l交抛物线于A、B两点

焦点F(1,0)AB的直线方程为y=x-1x²-6x+1=0x1+x2=6y1+y2=x1+x2-2=4线段AB的垂直平分线所在的直线方程y=-(x-3)+2=-x+52)AB的长度L=|x

过抛物线y^2=4x的焦点F作倾斜角为π/4的直线交抛物线于A,B两点,则AB长是

焦点F(1,0),准线为:x=-1,设A(x1,y1),B(x2,y2)AB=AF+BF由抛物线的性质,AF=x1+1,BF=x2+1所以,AB=x1+x2+2所以,直线方程为:y=x-1把y=x-1

过抛物线y^2=4x的焦点F作倾斜角为θ的直线交抛物线于AB两点用θ表示AB的长度

/>y²=4x的焦点F(1,0),准线x=-1设A(x1,y1),B(x2,y2)利用抛物线的定义则|AF|=x1+1,|BF|=x2+1∴|AB|=x1+x2+2直线为y=tanθ(x-1