抛物线^2=2x与直线x=2所围成的图形绕x轴旋转一周的体积
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 08:26:33
x(x-2)=xx=0或x-2=1x=0或x=3所以面积=∫(0,3)[x-x(x-2)]dx=∫(0,3)[-x²+3x]dx=[-x³/3+3x²/2]|(0,3)=
再答:用牛顿-莱布尼茨公式求解
根据题意有x=-2x^2解这个方程有x1=0,x2=-1/2所以对应的y1=0,y2=-1/2直线y=x与抛物线y=-2x的平方的交点是(0,0)(-1/2,-1/2)
由y=x2y=2−x得x2+x-2=0,解得:x=-2,x=1,故积分区间[-2,1],当x∈[-2,1]时,直线x+y=2在抛物线y=x2的上方,故抛物线y=x2与直线x+y=2所围成的图形的面积S
解题思路:利用定积分的知识求解。解题过程:见附件最终答案:略
将y=x-2与y²=2x联立消去x得:(x-2)²=2x,x²-6x+4=0,设A(x1,y1),B(x2,y2).则x1+x2=6,x1x2=4.则x1x2+y1y2=
直线y=x-4和x轴的交点为A(4,0)直线y=x-4和y²=2x的交点为B(2,-2),C(8,4)用y作自变量更容易做.直线x=y+4,抛物线,x=y²/2画个草图可知,S=∫
先计算y=x²与y=2x所围成的面积计算y=x²与y=2x的交点,即y=2x=x²,解方程得两交点为(0,0)和(2,4)∴S1=∫(0,2)(2x-x²)dx
利用积分求解连立两个方程2x=x^2-8x+16得到交点是x=2和x=8对应y是-2和4因为曲线可表示成x=y^2/2与x=y+4积分∫y+4-y^2/2dy积分区间[-2,4]=y^2/2+4y-y
∫-2,4[(y+4)-1/2y²]dy=(1/2y²+4y-1/6y³)|-2,4=(8+16-32/3)-(2-8-4/3)=40/3-(-22/3)=62/3再问:
先求交点x=y^2/2=y+4y^2-2y-8=0(y-4)(y+2)=0y=4,y=-2x=y+4所以交点(8,4),(2,-2)围成的图形有一部分在x轴下方其中0≤x≤2,x轴下方的抛物线是y=-
两者交点横坐标为±2y=x²的原函数是y=1/3x³,与x轴围成的面积为1/3·2³-1/3·(-2)³=16/3y=4的原函数是y=4x,与x轴围成的面积为4
(1)由y=2x²,y=4x消y得x=0或x=2故面积s=∫(0--2)4x-2x²dx=2x²-(2/3)x³|(0--2)=8/3(2)设直线方程为y=4x
求出y=3x和y=x^2+2的两个交点坐标为(1,3),(2,6),图形由两部分面积组成,S=1*3/2-∫(2→3)√(y-2)dy+∫(3→6)√(y-2)dy-(1+2)*(6-3)/2=3/2
∵由方程组y=x²-1和x=-2,得x=-2,y=3由方程组y=x²-1和y=0,得x=±1,y=0∴抛物线y=x²-1与直线x=-2的交点是(-2,3)抛物线y=x
y^2=xx-2y-3=0两式联立解得:y1=3,y2=-1,所以x1=9,x2=1取y=-1,3分别为积分上下限面积=∫(上限3下限-1)(抛物线方程-直线方程)dy=∫(上限3下限-1)(y^2-
抛物线y2=x与直线x-y-2=0方程联解,得两个图象交于点B(1,-1)和A(4,2),得所围成的图形面积为:S=∫102xdx+∫41(x−x+2)dx=92.故抛物线y2=x与直线x-y-2=0
y=x²与y=2x的交点是(0,0)、(2,4),则围成是面积是S=∫(2x-x²)dx【区间是[0,2]】=4/3
y²=-4xy=2x+1(2x+1)²+4x=04x²+8x+1=0两根之和=-2两根之积=1/4两根之差=根号下(4-1)=根号下3y²+2(y-1)=0y&