数列an的前n项和Sn=n^2-7n-8

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 17:26:49
数列an的前n项和Sn=n^2-7n-8
设数列{an}的前n项和为Sn=2an-2n,

(Ⅰ)因为a1=S1,2a1=S1+2,所以a1=2,S1=2,由2an=Sn+2n知:2an+1=Sn+1+2n+1=an+1+Sn+2n+1,得an+1=sn+2n+1①,则a2=S1+22=2+

数列an的前n项和Sn满足:Sn=2an-3n

S1=A1=2A1-3故A1=3而An=Sn-S(n-1)=(2An-3n)-[2A(n-1)-3(n-1)]=2An-2A(n-1)-3故An=2A(n-1)+3故An+3=2[A(n-1)+3]即

数列{an}的前n项和Sn=n^2-7n-8

(1)Sn-1=(n-1)^2-7(n-1)-8=n^2-9nan=Sn-Sn-1=2n-8(2)an是a1=-6,公差为2的等差数列∵当n<4时an<0∴Tn=-Sn=-na1-1/2n(n-1)d

数列{an}的前n项和Sn满足:Sn=2an-3n(n属于N*)

我就说第二问吧.若{an}中存在三项,它们可以构成等差数列,则有2an=(an-1)+(an+1)即2*(3*2^n-3)=3*2^(n+1)-3+3*2^(n-1)-3,3*2^(n+1)-6=3*

设数列{An}的前n项和Sn=2An-2^n

(2)a(n+1)=s(n+1)-s(n)=[2a(n+1)-2^(n+1)]-[2a(n)-2^n]所以a(n+1)-2an=2^n,当然就是等比数列哦

已知数列{An}的前N项和Sn=12n-N^2求数列{|An|}的前n项和Tn 并求Sn的最大值

Sn=12n-n^2Snmax=36Sn=12n-n^2Sn-1=12(n-1)-(n-1)^2两式相减an=12-2n+1=-2n+13数列{|An|}的前n项和Tn当n6时Tn=36+1+3+5+

已知数列an的前n项和Sn=3+2^n,求an

Sn=3+2^nSn-1=3+2^n-1an=sn-sn-1=3+2^n-3-2^(n-1)=2^n-2^(n-1)=2*2^(n-1)-2^(n-1)=2^(n-1)

数列An的前n项和为Sn,已知A1=1,An+1=Sn*(n+2)/n,证明数列Sn/n是等比数列

为了避免混淆,我把下角标放在内.首先从数列本身的基本意义出发a=S-S其次,从已知a=S(n+2)/n出发a=S*(n+1)/(n-1)因此S-S=S*(n+1)/(n-1)移项整理S=S

数列{an}的前n项和为Sn,a1=1,an+1=2Sn(n∈N*)

an+1=2Snan-1=2Sn-1an+1-an-1=2anan=(-1)^(n+1)Sn=1/2+1/2*(-1)^(n+1)看懂了给我满意,没有别的要求,

已知数列AN的前N项和SN,SN=2N^2+3n+2,求an

A(n+1)=S(n+1)-Sn=2(n+1)^2+3(n+1)+2-2n^2-3n-2=2n^2+4n+2+3n+3-2n^2-3n=4n+5An=5+4(n-1)

已知an=5n(n+1)(n+2)(n+3),求数列{an}的前n项和Sn

【方法1:强行展开a(n)表达式】1+2+……+n=n(n+1)/21^2+2^2+……+n^2=n(n+1)(2n+1)/61^3+2^3+……+n^3=n^2(n+1)^2/41^4+2^4+……

已知数列{an}的前n项和sn=10n-n^2(n属于N*),求数列{an绝对值}的前n项和Bn

Sn=10n-n²,a1=S1=9,n≥2时,an=Sn-S(n-1)=11-2n∴an=11-2n(n≥1)该数列前5项为正,从第6起为负.①1≤n≤5时,Bn=Sn=10n-n²

数列2^n*An 的前n项和为Sn=9-6n

你那样求,很明显是错误的.Sn是2^n*An的前n项和,所以必须按照下面的方法求2^n*An的前n项和为Sn=9-6nSn-S(n-1)=(9-6n)-(9-6(n-1)=9-6n-9+6n-6=-6

设数列an的前n项和为Sn,a1=1,an=(Sn/n)+2(n-1)(n∈N*) 求证:数列an为等差数列,

/>n≥2时,an=Sn/n+2(n-1)Sn=nan-2n(n-1)S(n-1)=(n-1)an-2(n-1)(n-2)Sn-S(n-1)=an=nan-2n(n-1)-(n-1)an+2(n-1)

已知数列{an}的前n项和sn=n^2-8n,求数列{|an|}的通向公式

由题意:a1=1^2-8×1=-7由条件sn=n^2-8n…①s(n-1)=(n-1)^2-8(n-1)…②①-②得:sn-s(n-1)=2n-9由an=sn-s(n-1)故an=2n-9,此式适用于

设数列{an}前n项和为Sn,数列{Sn}的前n项和为Tn,满足Tn=2Sn-n2,n∈N*.

(1)当n=1时,T1=2S1-1因为T1=S1=a1,所以a1=2a1-1,求得a1=1(2)当n≥2时,Sn=Tn-Tn-1=2Sn-n2-[2Sn-1-(n-1)2]=2Sn-2Sn-1-2n+

设数列{an}的前n项和Sn=2an-2^n

1.A1=S1=2A1-2^1A1=2S2=A1+A2=2A2-2^2A2=6S3=S2+A3=2A3-2^3A3=16S4=S3+A4=2A4-2^4A4=402.Sn=2An-2^nS(n+1)=

Sn是数列an的前n项和,an=1/n(n+2),求Sn

解题思路:裂项相消法解题过程:an=1/n(n+2)=1/2n-1/2(n+2)sn=1/2-1/2*3+1/4-1/2*4+1/2*3-1/2*5..........+1/2(n-2)-1/2(n)

数列{an}的前n项和Sn=n^2-7n-8.求

(1)S0=-8S1=1-7-8=-14S2=4-14-8=-18S3=9-21-8=-20所以a1=-6,a2=-18+14=-4,a3=S3-S2=-2(2)Sn-1=(n-1)^2-7(n-1)

设数列{an}的前n项和为Sn,且Sn=2^n-1.

解题思路:考查数列的通项,考查等差数列的证明,考查数列的求和,考查存在性问题的探究,考查分离参数法的运用解题过程: