数列an的前n项和为sn满足sn=fn=n² 2an-2
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 17:10:43
n=1时,S1=a1=2a1-1,a1=1n≥2时,an=Sn-S(n-1)=(2an-1)-(2a(n-1)-1)an=2a(n-1),故an=2^(n-1).
可以用an与Sn之间的关系求当n》2时an=Sn-S(n-1)=2an-2a(n-1)即an=2a(n-1)即数列{an}是等比数列当n=1时a1=S1=2a1-1a1=1an=2的n-1次方
2·a(n)=2[Sn-S(n-1)]=(n+1)an-n·a(n-1)∴(n-1)an=n·a(n-1),∴an/[a(n-1)]=n/(n-1),.,a3/a2=3/2,a2/a1=2/1,将上述
S1=A1=2A1-3故A1=3而An=Sn-S(n-1)=(2An-3n)-[2A(n-1)-3(n-1)]=2An-2A(n-1)-3故An=2A(n-1)+3故An+3=2[A(n-1)+3]即
Sn=2An-3nS(n-1)=2A(n-1)-3(n-1)两式相减An=2An-3n-(2A(n-1)-3(n-1))An=2A(n-1)-3所以An是等差数列(An-3)/((An-1)-3)=2
(1)an+2Sn·S(n-1)=0(n≥2),又an=Sn-S(n-1)所以Sn-S(n-1)+2Sn·S(n-1)=0(n≥2)两边同时除以Sn·S(n-1),得1/S(n-1)-1/sn+2=0
(1)∵数列a[n]的前n项和为S[n],且满足a[n]+2S[n]S[n-1]=0,n≥2∴S[n]-S[n-1]+2S[n]S[n-1]=0两边除以S[n]S[n-1],得:1/S[n-1]-1/
an+2Sn*S(n-1)=0而an=Sn-S(n-1)∴Sn-S(n-1)+2Sn*S(n-1)=0同除以Sn*S(n-1)整理:1/Sn-1/S(n-1)=2∴{1/Sn}为等差数列,公差2,首项
由题得:Sn=1-nan于是有:S(n-1)=1-(n-1)a(n-1)两式相减得:an=(n-1)a(n-1)-nan移项后有:(n+1)an=(n-1)a(n-1)于是:an=[(n-1)/(n+
1.等比数列an的前n项和An=(1/3)^n-c,a1=1/3-c,n>1时,an=An-A(n-1)=(1/3)^n-(1/3)^(n-1)=-2/3*(1/3)^(n-1)所以a1=-2/3,c
由Sn=n-Sa知,an=Sn-Sn-1=1(>=2).a1=1-Sa
(Ⅰ)证明:由a1+s1=2a1=2得a1=1;由an+Sn=2n得an+1+Sn+1=2(n+1)两式相减得2an+1-an=2,即2an+1-4=an-2,即an+1-2=12(an-2)是首项为
log2(an+1)=n+12^(n+1)=an+1an=2^(n+1)-1
an=Sn-Sn-1=-SnS(n-1)(Sn-Sn-1)/[SnS(n-1)]=-11/S(n-1)-1/Sn=-11/Sn-1/S(n-1)=1,为定值.1/S1=1/a1=1/(1/2)=2数列
(1)由an+1=Sn+(n+1)①得出n≥2时 an=Sn-1+n②①-②得出an+1-an=an+1整理an+1=2an+1.(n≥2)由在①中令n=1得出a2=a1+2=3,满足a2=
因为Sn+Sn-1=3an所以Sn-1+Sn-1+an=3an2Sn-1=2anSn-1=an因为Sn=an+1所以Sn-Sn-1=an+1-anan=an+1-an2an=an+1an+1/an=2
解题思路:方法:数列通项的求法:已知sn,求an。求和:错位相减法。解题过程:
an+Sn=2n令n=1a1+S1=2=>a1=1又a(n-1)+S(n-1)=2(n-1)与上式作差an-a(n-1)+an=22an-a(n-1)=2an-2=(1/2)[a(n-1)-2]得证a
(1)当n=1时,T1=2S1-1因为T1=S1=a1,所以a1=2a1-1,求得a1=1(2)当n≥2时,Sn=Tn-Tn-1=2Sn-n2-[2Sn-1-(n-1)2]=2Sn-2Sn-1-2n+
因为(n,Snn)在y=3x-2的图象上,所以将(n,Snn)代入到函数y=3x-2中得到:Snn=3n−2,即{S}_{n}=n(3n-2),则an=Sn-Sn-1=n(3n-2)-(n-1)[3(