CD是圆O的直径,BD 是弦,延长DC到A,使角ABD=120

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 21:32:29
CD是圆O的直径,BD 是弦,延长DC到A,使角ABD=120
如图,AB是⊙O的直径,BD是⊙O的弦,延BD到C,使AC=AB,BD与CD的大小有什么关系?为什么?

BD=CD.理由:连接AD,∵AB是⊙O的直径,∴∠ADB=90°,即AD⊥BC,∵AC=AB,∴BC=CD.

如图,AB是圆O的直径,若弧CD=弧BD,求证:OD‖AC

证明:连接OC∵AC‖OD∴∠A=∠BOD,∠C=∠COD∵OA=OC∴∠A=∠C∴∠COD=∠BOD∴弧CD=弧BD

AB是圆O直径,CD是圆O的弦,AB=6,∠DCB=30°.求弦BD长.

连接DB,∠ADB=90∠DAB=∠DCB=30所以DB=0.5*6=3

已知如图,AB、CE是圆O的直径,CD是圆O的弦,CD‖AB,求证弧EB=弧AC=弧BD

连接OD因为∠AOC=∠EOB,所以弧AC=弧EB因为AB//CD,所以∠EOB=∠ECD因为∠ECD=1/2∠EOD,所以∠EOB=∠BOD,所以弧EB=弧DB所以弧EB=弧AC=弧BD

1、如图1,AB,CD是圆O的直径,弦CE平行AB。弧BD与

解题思路:圆解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include/readq.php?a

如图所示,已知,AB,CD是圆O的直径,弦CE‖AB,求证BE=BD

证明:因为AB、CD是圆O的直径,所以∠AOC=∠EOBAO=BOCO=EO△AOC≌△EOB所以AC=EB连接OD因为CD是圆O的弦,所以OD是圆O的半径因为CD∥AB所以OC=ODAO=BO∠AO

如图,AB是圆o的直径,cd是圆o的弦,ab=6,角dcb=30°,求弦bd的长.

因为AB是直径所以∠ADB=90度又因为∠DAB=∠DCB=30度所以DB=1/2AB=1/2*6=3(30度角所对的直角边是斜边的一半)再问:谢谢啦再答:满意请采纳。再问:嗯嗯再问:好啦再问:还有了

关于圆的切线应用题如图所示 AB是○O的直径,BD是○O的弦,延长BD到C,使CD=BD,连接AC,过点D作DE⊥AC,

图形如图1、连接AD,AD⊥BC,又因为BD=CD,AD=AD故:AC=AB2、DE⊥AC,三角形CDE与三角形CAD相似,∠CDE=∠CAD=∠BAD=∠ADO故∠CDE+∠EDA=∠ADO+∠ED

ab是圆o的直径 c d是圆o的弦,且ab垂直cd,垂足为e,求bc等于bd

证明:在圆O中∵AB为直径CD为弦∵AB⊥CD∴CE=DE∠AED=∠AEC∵AE=AE∴Rt△AED≌Rt△AEC∴∠CAE=∠DAE∴弧BC=弧BD∴BC=BD(相等的弧所对的弦相等)再问:若bc

AB是圆O的直径,OD平行AC,弧CD和弧BD的大小有什么关系

如图:连接OC∠OAC=∠OCA∵OD‖BD∴∠OCA=∠COD∠OAC=∠BOD∴∠COD=∠BOD∴弧CD=弧BD(在同圆中,相等的圆心角所对的弧相等)

如图,已知ab是圆o的直径,ca是圆o的切线,bd‖co,求证:cd是圆o的切线

证明:连接OD∵BD∥CO∴∠B=∠COA∵∠B=1/2∠DOA∴∠DOC=∠COA连接AD所以AD⊥BD∵BD∥CO∴∠OCD=∠BDE(E为CD延长线一点)∠DAB=∠BDE∠DAB+∠B=90°

如图,AB是圆O的直径若弧CD与弧BD相等,则OD//AC,

平行设od垂直平分bc于eoa=obeb=ec所以平行

如图,在圆O中,AB=AC,AD是圆O的直径.试判断BD与CD

∵AD是直径∴弧ABD=弧ACD∵AB=AC∴弧AB=弧AC∴弧ABD-弧AB=弧ACD-弧AC即弧BD=弧CD∴BD=CD

如图,圆O是三角形ABC的外接圆,CD是三角形ABC的高,AD等于3,BD等于8,CD等于6,求圆O直径

∵AB=AD+BD=11,∴本题中AB不是直径,如果是直径,直径可求.∴不是用射影定理,本题用相似三角形.根据勾股定理:AC=√(CD^2+AD^2)=3√5,BC=√(CD^2+BD^2)=10,过

如图,AB是圆O的直径,CD是圆O的弦,AB=6,∠DCB=30°,求弦BD的长

连接BD∵AB是直径,D在圆上∴∠ADB=90°∠A=∠C=30°∴BD=AB/2=3

AB是圆O的直径,C是圆O上一点,CD垂直AB,垂足为D,CD=4,BD=2

三角形BCD为直角三角形,则BC=根号20;COSB=BD/BC=2/根号20;三角形ABC为直角三角形,COSB=BC/AB=根号20/AB=2/根号20;解得AB=10;半径R=AB/2=5AC=

已知AB,CE是⊙O的直径,CD是⊙O的弦,CD‖AB求证:弧EB=弧AC=弧BD

1证弧EB=弧AC:在圆中,证明三角形OEB和三角形OAC全等,因为AB和CE是直径,所以OB=OA,OC=OE,根据全等三角形定理,BE=AC,根据等弦对等弧,弧EB=弧AC得证2证弧AC=弧BD:

AB,CD是圆O的两条直径,AE是圆O的弦,且AE//CD,试说明弧BD=弧DE

联接BEAB由"直径所对圆周角为直角"知角AEB=90度则角AEO+角OED=90度,由AE平行CD,知角AEO=角DOE,那么角DOE+角OED=90度,所以OD垂直于EB,由垂径定理知OD垂直平分

AB CD是圆O的两条直径,AE是圆O的弦,且AB平行CD,求证弧BD=弧DE

联接BEAB由"直径所对圆周角为直角"知角AEB=90度则角AEO+角OED=90度,由AE平行CD,知角AEO=角DOE,那么角DOE+角OED=90度,所以OD垂直于EB,由垂径定理知OD垂直平分