cosZ (z-π 2)^2dz的积分
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 16:22:00
f(z)=(3z+5)/(z^2+2z+4)是区域D={z/z的模小于等于1}上的解析函数,且D的边界C是光滑闭曲线.根据Cauchy积分定理,可知这个复积分为0.
z'x=2e^(2x+y)z'y=e^(2x+y)所以dz=2e^(2x+y)dx+e^(2x+y)dy
e^(-xy)-2z+e^z=0-ye^(-xy)-2z'(x)+e^zz'(x)=0z'(x)=ye^(-xy)/(e^z-2)-xe^(-xy)-2z'(y)+e^zz'(y)=0z'(y)=xe
z²+2z+4=0的根为:[-2±√(4-16)]/2=-1±i√3这两个点均不在单位圆内,因此被积函数在单位圆内解析,所以本题积分结果为0希望可以帮到你,如果解决了问题,请点下面的"选为满
两边同时微分:dx+2ydy+2zdz=2dzdz=1/(2-2z)dx+2y/(2-2z)dydz/dx=1/(2-2z)dz/dy=2y/(2-2z)注意:这是全微分求偏导数
cosZ=[e^(iz)+e^(-iz)]/2=2e^(iz)+e^(-iz)=4设,t=e^(iz)则,t+1/t=4t^2-4t+1=0(t-2)^2=3t=±√3+2e^(iz)=±√3+2两边
(2)△Z=2.1×0.8-2×1dz=Zx·△x+Zy·△y=1×0.1+2×(-02)第一题我在想先
f(z)=z/(z+1)*e^[2/(z+1)]设I=∫(|z|=π)f(z)dz因为在区域|z|
1.我学了这么长时间的数学,还没有听说过余弦函数的定义域可以是虚数.2.我们设z=r(cosA+isinA),i为虚数单位.cosA+rcos2A+r^2cos3A+……+r^ncosnA即为1+z+
令u=x^2+y^3dz/dx=dz/duXdu/dx=e^uX2x=2xe^(x^2+y^3)dz/dy=dz/duXdu/dy=e^uX3y=3ye^(x^2+y^3)考查公式(e^x)'=e^x
对两个式子各自求对x的导数,构成方程组,解dz/dx.对两个式子各自求对y的导数,构成方程组,解dz/dy.dx/dz=(dz/dx)^(-1),dy/dz=(dz/dy)^(-1)
分析:本题涉及的变量太多监考现场看到学生束手无策,反映了学生在数学学习过程中没有很好的体味到各章节知识的内在联系,以及基本的数学思维习惯.如下请看三种解法.法一:借助高一下册p51练习中的恒等式即(和
你去看看留数定理那一章,一个公式就ok了
dz=2e^(2x+y^2)dx+2ye^(2x+y^2)dy把对x和对y的偏导分别求了出来再乘以各自的微分项即可.
利用留数定理做,会很简单.留数定理是说如果f(z)在积分区域内存在z1~zn,n个孤立奇点,则∮Cf(z)dz=2πi∑Res(f(z),zi),其中Res(f(z),zi)为f(z)在zi处的洛朗级
令z=re^(iθ),则z共轭=re^(-iθ),dz=rie^(iθ)dθ,|z|=r,所以积分=∮rdθ,这里r=2,所以积分=2∮dθ(积分限0到2π)=4π
u=x^2+y∂u/∂x=2x∂u/∂y=1du=(∂u/∂x)dx+(∂u/∂y)dy=2xdx+dy
z=x^2+2xy两边同时求导数,得到:dz=2xdx+2ydx+2xdy即:dz=2(x+y)dx+2xdy.
z=(2y+7)^2*ln(x^3+2)dz/dx=3x^2*(2y+7)^2/(x^3+2)dz/dy=2*(2y+7)*ln(x^3+2)
再问:就是这个吗?再答:是的。如还有不懂请追问,懂了请采纳。再问:还有这三题