曲线c1的参数方程为x=tcosa,y=tsina,曲线cp=2sina
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 23:49:00
由x=2cosθy=sinθ,得x24+y2=1即为C1的普通方程.又∵ρcos(θ−π4)=2.∴ρ(cosθcosπ4+sinθsinπ4)=2,即ρcosθ+ρsinθ=2.C2化为
解析:设直线C1被曲线C2截得的线段长为L则由题意可得直线C1的直角坐标方程为:y=1,而曲线C2的标准方程为x²+y²=4,它表示圆心在原点半径为2的圆结合草图易知圆心(原点)到
解题思路:转化成普通方程,圆心到直线距离小于半径。.........................................解题过程:
c1:y=-1-2t=-3+(2-2t)=-3+(4-4t)/2=3-x/2;c2:p(2cosθ-sin8)=1→2p*cosθ-p*sin8=1→2x-y=1→y=2x-1;议程理两条直线,由于其
C1:y=-1/2x-3C2:y=2x-1故垂直再问:可以告诉我过程吗?谢谢!再答:一般方法求C1,反解,t=(x+4)/4,y=-1-2*(x+4)/4=-1/2x-3解C2,一般你解可根据在直角坐
C1化为普通方程为(x+2)^2+y^2=10,中心坐标(-2,0),半径r1=√10;C2化为普通方程为x^2+y^2=2x+6y,配方得(x-1)^2+(y-3)^2=10,中心(1,3),半径r
(Ⅰ)曲线C1的参数方程为x=acosφy=sinφ(1<a<6,φ为参数).C1的直角坐标方程为x²/a²+y²=1曲线C2的极坐标方程为P=6cosφ.C2的直角坐标
这不是今年新课标I的高考题么?很简单的(Ⅰ)由题意可知C1的普通方程为(x-4)²+(y-5)²=25即C1:x²+y²-8x-10y+16=0∵x=ρcosθ
x=2+tcosay=1+tsina这是直线的参数方程恒过(2,1)点斜率=tanay=tana(x-2)+1∴直线的直角坐标方程是tanax-y+1-2tana=0如果您认可我的回答,请点击“采纳为
极坐标下的函数表示极径ρ(坐标点到原点的距离)与极角θ(原点到坐标点的矢量与极轴的夹角,类似直角坐标系中的倾角)的关系,也就是说在点移动产生c1,c2轨迹的过程中,原点到动点的矢量的长度ρ随着该矢量的
x=2-3sinαx-2=-3sinα同样y+2=3cosα所以(x-2)^2+(y+2)^2=9(sinα^2+cosα^2)=9表示以(2,-2)为圆心,3为半径的园
(1)由曲线C1的参数方程为x=2cosαy=2+2sinα,化为曲线C1的方程为x2+(y-2)2=4,设P(x,y),∵P点满足OP=2OM,∴M(x2,y2),代人x2+(y-2)2=4,得x2
曲线C1的极坐标方程为ρcos2θ=sinθ,普通方程为:y=x2,曲线C2的参数方程为x=3−ty=1−t(t为参数),的普通方程为:x-y-2=0.与直线平行的直线与抛物线相切时,切点到直线的距离
(I)曲线C1的参数方程式x=4+5costy=5+5sint(t为参数),得(x-4)^2+(y-5)^2=25即为圆C1的普通方程,即x^2+y^2-8x-10y+16=0.将x=ρcosθ,y=
(Ⅰ)由x=32+cosθy=12+sinθ变形为x−32=cosθy−12=sinθ,平方相加得(x−32)2+(y−12)2=1,可得圆的普通方程.(Ⅱ)显然直线l过点(0,-1),依题意设直线l
⑴、A的极坐标为(2,π/3)——》A的直角坐标为(1,√3),B的极坐标为(2,5π/6)——》B的直角坐标为(-√3,1),C的极坐标为(2,4π/3)——》A的直角坐标为(-1,-√3),D的极
先化为直角坐标方程:(x-4)/5=cost、(y-5)/5=sint=>(x-4)^2/5^2=cos^2t、(y-5)^2/5^2=sin^2t=>(x-4)^2/5^2+(y-5)^2/5^2=
C2,(y-2)^2=1-xx=1-(y-2)^2C1,x=(y-2)^2公共点1-(y-2)^2=(y-2)^2(y-2)^2=1/2y=2±√2/2x=(y-2)^2=1/2所以C1和C2只有两个
这是超级详的解答呦,做了老半天呢!为了让你看得懂,弄个照片给你看看.
在标准的直线参数方程中,【标准:①x=x0+tcosθ;②y=y0+tsinθ】t的几何意义是:直线上的点Q(x,y)到定点(x0,y0)的数量【若点Q在点P上方,则t为正,否则t为负】则:1、|AB