曲线y=x2-6x 1 与坐标轴的交点都在圆 上.求圆 的方程

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 02:06:09
曲线y=x2-6x 1 与坐标轴的交点都在圆 上.求圆 的方程
若函数y=-3x+b的图像上有两点A(x1,4),B(x2.6),则x1与x2的大小关系是多少?

答:因为函数y=-3x+b随着x的增大而减小,所以函数值大的x就小,所以x1>x2.

在抛物线y=-x2+1上求一点p(x1,y1),使过该点P的抛物线的切线与抛物线及两坐标轴所围图形的面积最小

设过p(a,b)的切线方程为y-b=K(x-a)  对抛物线求导  y'=-2x  y-b=-2a(x-a)  当X=0时,y=2a^2+b  当y=0时,x=a+b/(2*a)  切线与xy轴围成的

已知抛物线 y=x^2+bx-x+c与x轴交点的横坐标为X1、X2,且X1>0,X2=X1+1.

设f(x)=x^2+bx+c,则题中f(x)-x=x^2+bx-x+c与x轴交点的横坐标为X1、X2=x1+1,设f(x)-x=(x-x1)(x-x1-1)f(x)=(x-x1)(x-x1-1)+xy

如果一个正比例函数的图像与反比例函数y=6/x的图像交于A(x1,y1).BC(x2,x2)两点,那么(x2-x1)(y

设y=kx,所以x1=(6/k)^(1/2),y1=(6k)^(1/2)x2=-(6/k)^(1/2),y2=-(6k)^(1/2)所以原式=24

在平面直角坐标系中,曲线y=x2+2x-3与坐标轴的交点都在圆C上,

(I)曲线y=x2+2x-3与y轴的交点为E(0,-3),与x轴的交点为F(1,0)、D(-3,0)∵线段FD的垂直平分线为x=-1,∴设圆C的圆心为(-1,b),由|EC|=|FC|,得(0+1)2

已知直线y=b(b>0)与曲线f(x)=sinx在y轴右侧依次的三个交点的横坐标x1,x2,x3成等比数列,则b的值为

依题意,作图如下:由题意可知,x1•x3=x22①,x1+x2=π②,x1+2π=x3③,由①②③得:x1•(x1+2π)=(π-x1)2,解得x1=π4,从而可得x2=3π4,x3=9π4,∴b=s

曲线y=13x3+12x2在点T(1,56)处的切线与两坐标轴围成的三角形的面积为(  )

由题意易知,点T为切点,∵f′(1)=2,∴切线方程为:y=2x-76,∴它在两坐标轴的截距分别为712,-76,∴与两坐标轴围成的三角形面积S=12×712×|-76|=49144.故选D.

已知曲线C:x2+y2=9(x≥0,y≥0)与函数=y=lnx及函数y=ex的图象分别交于点A(x1,y1),B(x2,

画出图形,如图.由于函数=y=lnx和函数y=ex是互为反函数,故函数=y=lnx及函数y=ex的图象关于直线y=x对称,从而曲线C:x2+y2=9(x≥0,y≥0)与函数=y=lnx及函数y=ex的

已知曲线C:x2+y2=4(x≥0,y≥0),与抛物线x2=y及y2=x的图象分别交于点A(x1,y1),B(x2,y2

∵抛物线x2=y及y2=x的图象关于直线y=x对称,∴A(x1,y1),B(x2,y2)两点关于直线y=x对称,故x1=y2,x2=y1,B点坐标为(y1,y2),∵点B在曲线C:x2+y2=4(x≥

斜率为k的直线与曲线y=lnx交于A(X1,Y1),B(X2,Y2)(X1<X2)求证x1

简单运用拉格朗日中值定理可证.首先我们要知道拉格朗日中值定理,它是这样的:设f(X)在[a,b]连续,在(a,b)上可导,则存在x属于(a,b),使得[f(b)-f(a)]/[b-a]=f'(x).证

在平面直角坐标系XOY中,曲线Y=X²-6X+1与坐标轴的交点

y=x²-6x+1y=(3x+1)(-2x+1)与X轴的交点(-1/3,0)(1/2,0)与Y轴的焦点(0,1)

在平面直角坐标系xOy中,曲线y=x2-6x+1与坐标轴的交点都在圆C上 (Ⅰ)求圆C的方程;

(1)曲线y=x²-6x+1与y轴的交点:D(0,1)y=x²-6x+1=0,x=3±2√2,与x轴的交点:A(3-2√2,0),B(3+2√2,0)曲线y=x²-6x+

在平面直角坐标系xOy中,曲线y=x2-6x+1与坐标轴的交点都在圆C上,则圆C的方程为?

首先建立直角坐标系xoy其次做x2-6x+1=0的二次函数图像于xoy上然后测算三个焦点分别为(3±2√2,0)和(0,1)由此可知在x轴上焦点分别为(3+2√2,0)(3-2√2,0)由圆的性质可知

在平面直角坐标系xOy中,曲线y=x2-6x+1与坐标轴的交点都在圆C上.求圆C的方程

y=x2-6x+1与坐标轴的交点:x=0,y=1x=3±2√2,y=0圆C圆心在三点的中垂线上,xo=3圆C方程:(x-3)^2+(y-b)^2=c9+(1-b)^2=c8+b^2=c9+1-2b+b

在平面直角坐标系xOy中,曲线y=x2-6x+1与坐标轴的交点都在圆C上. (Ⅰ)求圆C的方程

(1)曲线y=x²-6x+1与y轴的交点:D(0,1)y=x²-6x+1=0,x=3±2√2,与x轴的交点:A(3-2√2,0),B(3+2√2,0)曲线y=x²-6x+

如图,计算由曲线y=x2+1,直线x+y=3以及两坐标轴所围成的图形的面积S.

如图,由y=x2+1与直线x+y=3在点(1,2)相交,…(2分)直线x+y=3与x轴交于点(3,0)…(3分)所以,所求围成的图形的面积S=∫10(x2+1)dx+∫31(3−x)dx=(x33+x

已知:反比例函数y=6/x与一次函数y=kx+3的图像交于点A(x1,x1)B(x2,y2),且x1的平方+x2的平方=

y=6/x=kx+3kx²+3x-6=0x1+x2=-3/k,x1x2=-6/kx1²+x2²=(x1+x2)²-2x1x2=9/k²+12/k=59