曲面z=x^2 y^2及z=6-2x^2-y^2所围成的立体的体积
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 20:50:25
z=x^2+2y^2叫椭圆抛物面,教材里在“二次曲面”部分是介绍过这种曲面的,它的立体图形如开口向上的旋转抛物面,只不过用平行于xoy面的平面去截,截痕不是圆,而是椭圆.z=6-2x^2-y^2也是椭
-(pi*(5*5^(1/2)-27))/6另附Matlab程序段:%此程序为计算空间中给定的曲面r(u,v)的面积clearall;clc;symsuv;%{设置曲面的向量形式r(u,v)=分量函数
x²+y²+z²=2x+2y+2z(x-1)²+(y-1)²+(z-1)²=3令x=1+u,y=1+v,z=1+w==>Σ':u²
设l为柱面的底,即圆(x-1)^2+(y-1)^2=1.那么设x=1+cost,y=1+sintz=x^2+y^2=(1+cost)^2+(1+sint)^2=3+2cost+2sintdl=√[(x
求由x=0y=0x+y=1围成的三棱柱的体积下底为z=0上底为z=x^2+y^2(圆锥)=∫(0,1)dx∫(0,1-x)dy∫(0,x^2+y^2)dz=∫(0,1)dx∫(0,1-x)[z](0,
所围成立体的体积=∫dx∫(2-x-y)dy=∫(2√x-x/2-x^(3/2)-2x²+x³+x^4/2)dx=4/3-1/4-2/5-2/3+1/4+1/10=11/30
由Z=x²+2y²和Z=6-2x²-y²可得二者的交线为x²+y²=2由此可得V=∫∫[(x²+2y²)-(6-2x
∫∫D(x^2+y^2)dxdy其中D为:x^2+y^2
过原点的对顶锥面,z为中心轴.xy平面投影边界是x/3=±y/2;再问:不好意思哈,没懂,能再详细点吗?再答:题给直线经过原点,因为是绕Z轴旋转,所以用平行于Z轴的平面“Z=常数”去截该旋转曲面,所得
ezmesh('sqrt(4-x^2-y^2)')
积分限定的是正确的,不是正解.∫∫∫zdv=∫(0,1)zπz^2dz+∫(1,√2)zπ(2-z^2)dz=π/4+π[z^2-(1/4)z^4](1,√2)=π/4+π[(2-1)-(1-1/4)
这题,昨天刚刚答了.这个不能用高斯定理,因为在这个比区域内,含有积分函数的奇点(0,0,0)所以分开来求即可.对于z=R和z=-R两个面∑1和∑2,因为dz=0而且两个面处,z=R处的投影,是朝上的圆
曲面z=x^2+2*y^2是一个开头向上的马桶型的图形,z=6-2*x^2-y^2是前面那个图形关于z轴对称后向z轴正方向移动6个单位后得到的图形,是一个与前者图形完全相同但是开口向下的图形且与前者所
z=x²2y²
联立z1=x^2+2y^2及z2=6-2x^2-y^2消去z得x^2+y^2=2(图略.z2在上z1在下)知方体Ω在xoy面投影区域为D:x^2+y^≤2极坐标中0≤θ≤2π,0≤r≤√2那么立体的Ω
作柱面坐标变换,设x=rcosφ,y=rsinφ,z=z故∫∫∫|z-x^2+y^2|dxdydz=∫(0,2π)dφ∫(0,√2)rdr∫(0,1)|z-r|dz(符号∫(a,b)表示从a到b积分,
两曲面的交线在xy坐标面上的投影曲线是x^2+y^2=2,所以整个立体在xy面上的投影区域是D:x^2+y^2≤2体积V=∫∫(D)[(6-2x^2-y^2)-(x^2+2y^2)]dxdy用极坐标=
这个是二重积分算出来的啊:积分区域D:x²+y²≤4V=∫∫(4-x²-y²)dxdy=∫【0→2π】dθ∫【0→2】(4-ρ²)ρdρ=2π*(2ρ