曲面方程z=x^2 y^2对应的图形名称

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 23:50:07
曲面方程z=x^2 y^2对应的图形名称
此方程x^2+2y^2+3z^2=9所表示的曲面……急急急

三轴椭球面用x=a,y=b,z=c去截的截面都是椭圆

空间直线L:1/2(x-1) = y/1 = (z+1)/1,求该直线绕z轴旋转一周所成的曲面方程.

利用(x-1)/2=y=z+1解得x=2z+3,y=z+1所以绕z轴旋转的曲面为x^2+y^2=(2z+3)^2+(z+1)^2

曲面z=x^2+y^2 被平面z=1 z=2所截曲面面积

-(pi*(5*5^(1/2)-27))/6另附Matlab程序段:%此程序为计算空间中给定的曲面r(u,v)的面积clearall;clc;symsuv;%{设置曲面的向量形式r(u,v)=分量函数

过直线{10x+2y-2z=27,x+y-z=0},做曲面3x*x+y*y-z*z=27的切平面,求此切平面方程

设面方程为:(10x+2y-2z-27)+入(x+y-z)=0设切点为X,Y,Z那么在(x,y,z)处,两者偏导数斜率相当6x=10+入2y=2+入-2z=-2-入所以x=1/3y+2/3,z=y代入

计算曲面积分闭合曲面I=ff(x^2+y^2)dS.其中曲面为球面x^2+y^2+z^2=2(x+y+z)

x²+y²+z²=2x+2y+2z(x-1)²+(y-1)²+(z-1)²=3令x=1+u,y=1+v,z=1+w==>Σ':u²

曲面f(x,y,z)关于平面Ax+By+Cz+D=0对称的曲面方程是什么?

=(x,y,z)与rr=(xx,yy,zz)关于平面Ax+By+Cz+D=0对称,有r=rr+2dn=(xx,yy,zz)+2(A*xx+B*yy+C*zz+D)/sqrt(A^2+B^2+C^2)(

曲面2z=x^2+y^2被柱面(x^2+y^2)^2=x^2-y^2所截下部分的曲面

柱面(x^2+y^2)^2=x^2-y^2化成极坐标方程是r^2=cos2θ.即r=√cos2θ.θ的范围是[-π/4,π/4]∪[3π/4,5π/4]S=∫∫dS=∫∫√[1+(z'x)^2+(z'

(2)请给出曲面z = x2 + 2y2的一点切平面方程使其与3x + 2y + z = 0 平行.

设切点为M(a,b,c),则c=a^2+2b^2,----------(1)令f(x,y,z)=z-x^2-2y^2,则f对x、y、z的偏导数分别为-2x、-4y、1,因此曲面在M点处的切平面的法向量

曲面x^2-2y^2+z=2被xoy平面所截得的曲线绕y轴旋转一周所成的旋转曲面方程

联立方程x^2-2y^2+z=2与z=0,可解得xoy面上曲线方程x^2-2y^2=2.接着令x=(+或-)(x^2+z^2)^(1/2),然后解得方程x^2+z^2-2y^2=2

X^2+Y^2=1和Z=0 绕X轴旋转一周得到的曲面方程

X^2+Y^2=1是一个在xy平面上的一个圆,直径D=1现在这个圆绕X轴旋转一周(你可以这样想一下,一个放大镜,你握着把,旋转一圈,那个放大镜的路径就成了一个球)就是一个球

求曲面x^2+2y^2+3z^2=21过点(1,2,3)的法线方程?

分别求偏导数,(2x,4y,6z)代入(1,2,3)就得法线方向(2,8,18),即(1,4,9)法线可以写成x-1=(y-2)/4=(z-3)/9

求 曲面Z=4-X^2-Y^2在点P(1,1,2)处的切平面方程和法线方程

方程整理成为F(x,y,z)=x²+y²+z-4=0,切向量=(Fx,Fy,Fz)=(2x,2y,1)=(2,2,1),则法线(x-1)/2=(y-1)/2=(z-2)/1,切平面

直线l的方程为2y=x=4z-2,求l绕y轴旋转一周所成曲面的方程.

设旋转面上任意一点为p(x,y,z),它是由直线上的点p0(2y,y,1/2(y+1))旋转过来的.p到y轴的距离,应与p0到y轴的距离相等.即x^2+z^2=(2y)^2+[1/2(y+1)]^2,

若已知平面π平行于两直线x/2=y/-2=z,2x=y=z,并与曲面z=x^2+y^2+1相切,则π的方程

直线x/2=y/-2=z,2x=y=z的一个方向向量:n1={2,-2,1}2x=y=z的一个方向向量:n2={1/2,1,1}平面π的一个法向量n:n=n1×n2={-3,-3/2,3}设H(x,y

方程x^2/4+y^2=z^2,表示什么曲面

方程x^2/4+y^2=z^2,表示什么曲面表示锥面.再问:A.椭球面,B.双曲面,C.锥面,D.双曲线,选哪个?再答:C.锥面,不客气。

曲面方程指出下列方程是什么曲面,若是旋转曲面,指出他们由什么曲面旋转而成1.(x^2)/4+(y^2)/9+(z^2)/

1.椭球面.关于原点中心对称.系旋转曲面.由YOZ坐标平面的椭圆(y^2)/9+(z^2)/4=1绕Y轴旋转180度形成;或者由XOY坐标平面的椭圆(x^2)/4+(y^2)/9=1绕Y轴旋转180度