D1绕x轴旋转的体积
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 00:31:42
求积分运算∫.相信我
S=∫(0,1)[x(1/2)]dx-∫(0,1)[x^2]dx=[2/3(x^(3/2))-1/3(x^3)](0,1)=2/3-1/3=1/3V=π∫(0,1)[x]dx-π∫(0,1)[x^4]
再问:三条,f(x),g(x),t(x)再答:要看你三条曲线画出来是什么样子的没有统一的公式可以用微元法做再问:再答:
先求交点为(1,2)和(1,-2)该图形关于x轴对称,体积V=2π∫(0,2)[(5-y^2)^2-1]dy=832π/15
所求体积=2∫πb²(1-x²/a²)dx=2πb²[x-x³/(3a²)]│=2πb²(a-a/3)=4πab²/3.
答:x=5±√(16-y^2)且关于x轴对称,所以V=2π∫0到4[(5+√(16-y^2))^2-(5-√(16-y^2))^2]dy=2π∫0到420√(16-y^2)dy=40π∫0到4√(16
(1)设:X=x/a,Y=y/bS=∫∫dxdy(其中x从-a到a,y从-b到b)=ab∫∫dXdY(其中X从-1到1,Y从-1到1)=ab*半径为1的圆的面积=πab设:椭球方程x^2/a^2+y^
非常可惜,一楼积分积错了.请参见图片,点击放大.如不清楚,可以放大荧屏,或将点击放大后的图片临时copy下来,会非常清晰:
所求的旋转体体积V=∫(0,1)πx^2dx+∫(1,2)π(1/x)^2dx=π(x^3/3)|(0,1)-π(1/x)|(1,2)=π/3-π/2+π=5π/6
y=根号x与直线x=1,x=4,y=0围成的平面图形绕Y轴旋转所得旋转的体积:2π∫xydx=2π∫x^3/2dx=4π/5∫dx^5/2积分上限是4,下限是2所以体积是124π/5
再问:答案为160派的平方,求续答再答:啊啊啊不好意思啊,我这答案用错公式了。。。今天真是精神失常,连续做错了好几题- -应该用盘旋法:配上图像的话你会更好理解的:
你看算出来答案一样不.你说的参数法求体积不涉及旋转啥意思,怎样算.
直接用球体积公式就可以了!4/3pi!再问:怎么会是球呢我没搞懂他是怎么转的能画个图吗?再答:原来的曲线是个上半圆,绕着其直径转一圈啦!
a>0绕X轴的旋转体积公式:V=∫[0,a上下限]π*y^2dx=∫4aπxdx=4aπ∫xdx=4aπ*(x^2/2)|[0,a]=2a^3π
既然你只要结果,就用AutoCAD给你查一查,建立模型,massprop命令即可AutoCAD一时半会儿交不会,下面是结果,绝对正确,计算机算的可惜不能用pi表示,更高级的数学软件可以,如matlab
再答:亲,如果觉得我的答案满意,给个采纳吧!
先求所得旋转体的体积.在X轴上距离原点x处取一微元dx.y=sinx在x到x+dx之间与x轴之间形成一矩形条,将该矩形条绕x轴旋转得旋转体在x到x+dx之间的体积元素,即一个圆柱体,体积=∫π(sin
V=∫(下限0上限1)π(y1)^2dx+∫(下限1上限2)π(y2)^2dx.其中,y1=根号下2px,y2=-(根号2)x+2倍根号2.道理是取很小一段dx,则绕x轴旋转后得一圆盘高dx,底面半径
1:1绕Y轴旋转的体积为:底面半径为3,高为3的圆锥体体积,即为1/3的圆柱体积(底面半径为3,高为3)绕X轴旋转的体积为:一个底面半径为3,高为3的圆柱体积减去两个底面半径为3,高为3的圆锥体体积,