diag(1,1,1,8)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 07:56:12
diag(1,1,1,8)
A=diag(1,2,3) 且A^-1BA=4A+2BA 求B

/>A^-1BA=4A+2BA两边同时左乘A得BA=4A²+2ABA(E-2A)BA=4A²两边同时右乘A^-1得(E-2A)B=4A那么B=(E-2A)^-1·4AE-2A=di

已知矩阵A的伴随阵A*=diag(1,1,1,8),且ABA^(-1)=BA^(-1)+3E,求B

n=4,det(A*)=|A|^(n-1)=|A|^3=8,|A|=2(A*)A=A(A*)=|A|E=2E原等式右乘A得AB=B+3AA*左乘上式,(A*)AB=(A*)B+3(A*)A2B=(A*

设A的伴随矩阵A*=diag(1,1,1,-8),且 ABA^(-1)=BA^(-1)+3E,求B.

由已知ABA^-1=BA^-1+3E等式两边左乘A*,右乘A,得|A|B=A*B+3|A|E因为|A*|=8=|A|^3所以|A|=2所以2B=A*B+6E所以(2E-A*)B=6E所以B=6(2E-

已知矩阵A的伴随阵A*=diag(1,1,1,8),且ABA^-1=BA^-1 +3E.求B.

ABA^-1=BA^-1+3EAB=B+3A(A-E)B=3AB=3A(A-E)^-1|A|^(4-1)=|A*||A|=2A=diag(2,2,2,1/4)(A-E)^-1=diag(1,1,1,-

matlab中 diag(1 ./

1./v表示把向量v中的每个元素都取倒数.diag(x)表示构造一个对角矩阵,对角元就是向量x中的元素.

^=diag(-4,-1,-2)表示的矩阵为选哪个

B,diag{}表示对角阵,即B这种形式的矩阵,除了对角线外元素全为0

diag(1,2,3)什么意思?

表示一个三阶对角矩阵,其主对角线上的元素为1,2,3,其它元素都是零

已知矩阵A的伴随矩阵A^*=diag(1,1,1,8),且ABA^-1=ba^-1+3E,求B.

由已知ABA^-1=BA^-1+3E等式两边左乘A*,右乘A,得|A|B=A*B+3|A|E因为|A*|=8=|A|^3所以|A|=2所以2B=A*B+6E所以(2E-A*)B=6E所以B=6(2E-

线性代数:已知矩阵A的伴随矩阵A*=diag(1,1,1,8),且ABA(-1)=BA(-1)+3E(意思是矩阵A×矩阵

首先有三个等式(A是可逆的)A^(-1)=A*/|A|AA*=diag(|A|,|A|,|A|,|A|)=|A|E|A||A*|=|A|^n即|A*|=|A|^(n-1)本题n=4由已知ABA^(-1

设A=diag(1,-2,1)

由已知A*BA=2BA-8E等式两边左乘A,右乘A^-1得|A|B=2AB-8E又因为|A|=1*(-2)*1=-2所以-2B=2AB-8E所以(2A+2E)B=8E所以B=4(A+E)^-1=4di

已知A相似于对角阵diag(1 2 3 4),则A*特征值为?

A相似于对角阵diag(1234),所以A得特征值是1,2,3,4|A|=1*2*3*4=24AA*=|A|EA*=|A|A^(-1)=24A^(-1)所以A*的特征值是24*1^(-1)24*2^(

设三阶方阵A相似于矩阵diag(-1,1,2),求|A*A+E|

-1. 用性质计算.经济数学团队帮你解答.请及时评价.

矩阵A=diag(1,-2,1),A* BA=2BA-8E,求B

等式两边同时左乘A:|A|BA=2ABA-8A等式两边同时右乘A的逆:|A|B=2AB-8E这样解出B=diag(2,-4,2)

请问 线性代数中A=diag(1,2,3)中的diag是什么意思?

diag是(提取对角元素)还有线性代数函数有关的:det(求行列式值),inv(矩阵的求逆),qr(二次余数分解),svd(奇异值分解),bdiag(求广义本征值),spec(求本征值),schur(

设矩阵A相似于对角矩阵diag(2,2,2,-2),则det(1/4A*+3I)

因为A相似于对角矩阵diag(2,2,2,-2)所以A的特征值为2,2,2,-2|A|=-16所以A*的特征值为(|A|/λ):-8,-8,-8,8所以1/4A*+3I的特征值为(1/4λ+3):1,

设三阶方阵A相似于矩阵diag(-1,1,2),求|A的平方+E|

行列式等于特征值的乘积.经济数学团队帮你解答.请及时评价.

线性代数矩阵问题已知矩阵A的伴随矩阵A* = diag(1,1,1,8),且ABA(-1) = BA(-1) + 3E,

这类题目需要注意的内容(已知A*)1.AA*=A*A=|A|E由此式可把原式中的A转换成A*,目的是避免计算A2.|A*|=|A|^(n-1)上面的转换需计算出|A|.因为8=|A*|=|A|^(4-

设A=diag(1,-2,1),A*BA=2BA-8E,求B

解由A*BA=2BA-8E得(A*-2E)BA=-8E,B=-8(A*-2E)-1A-1=-8[A(A*-2E)]-1=-8(AA*-2A)-1=-8(|A|E-2A)-1=-8(-2E-2A)-1=

线性代数矩阵问题设矩阵A=diag(1,-2,1),A* BA=2BA-8E,求BA* 是伴随矩阵

A*=A的行列式乘以A的逆所以A*BA=2BA-8E可以转化为A的行列式乘以A的逆BA=2BA-8E,同时左乘A,右乘A的逆,可以得出:8E=(2A-A的行列式)B,将A=diag(1,-2,1),其