某垄断企业的成本函数是tc=100-5Q Q的平方

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 19:56:48
某垄断企业的成本函数是tc=100-5Q Q的平方
《经济学》已知垄断者成本函数TC=6Q+0.05Q^2,产品需求函数Q=360-20P 求:(1)利益最大的销售价格,产

垄断价格P下的利润为f(P)=PQ-TC=P(360-20P)-6(360-20P)-0.05(360-20P)^2=-40(P^2-30P+216)令f'(P)=0,得2P-30=0,于是利益最大的

某垄断厂商成本函数TC=0.5Q^2+10Q,产品的需求函数为P=90-0.5Q.计算售价P=55时垄断者提供的产量和赚

当P=55时,利润Y=收入-成本,即利润Y=P*Q-TC由于TC=0.5Q^2+10Q,P=55,所以利润Y=P*Q-O.5Q^2-10Q=-0.5Q^2+45Q对利润函数求导,可得Y'=-Q+45由

某垄断厂商的产品需求函数为P = 1760-12Q,成本函数为TC =1/3Q^3-15Q^2+5Q+24000

收入R=QP=-4Q^2+9400Q利润L=R-TC=-4Q^2+6400Q-4000dL/dQ=-8Q+6400令dL/dQ=0得Q=800(1)该厂商的均衡时的产量Q=800(2)该厂商的均衡时的

已知某垄断竞争厂商的短期成本函数为TC=0.6Q*Q+3Q+2

好的反需求函数为P=8-0.4Q.求该厂商实现利润最大化时的产量、法1;maxπ=P*Q-C(收益减成本)maxπ=(8-0.4Q)*Q-(0.6Q^2+3Q+5)=8Q-0.4Q^2-0.6Q^2-

假定某企业的短期成本函数是TC(Q)=Q^3-8Q^2+10Q+50

TVC=Q^3-8Q^2+10QAC=TC/Q=Q^2-8Q+10+50/QAVC=TVC/Q=Q^2-8Q+10AFC=FC/Q=50/QMC=dTC/dQ=3Q^2-16Q+10

请教微观经济学计算题:垄断市场需求曲线P=56-Q,垄断厂商1的成本函数TC=8Q,垄断厂商2的成本函数TC=Q∧2,当

设Q1,Q2,Q=Q1+Q2,利润=PO-TC1-TC2,(为关于Q1,Q2的二元函数),利润分别对Q1,Q2求偏导数等于0,组成二元一次方程组,解出Q1,Q2,即为两个厂商的产量,进而算出价格.

2.假定一个垄断者的产品寻需求曲线为:P=50-3Q,成本函数为TC=2Q,求垄断企业利润最大时的产量、价格和利

边际成本MC=成本(TC)’Q=2,(条件MR=MC)总收益TR=P*Q=(50-3Q)*QMR=(TR)’Q=50-6Q=2得Q=8(产量)价格P=50-3Q=50-3*8=26利润π=P*q-TC

假定某企业的短期成本函数是TC=Q3-10Q2+17Q+66.写出下列函数:FC,VC,AFC,AVC,AC,MC.

TFC=TC(0)=66TVC=TC-TFC=Q3-10Q2+17QAFC=TFC/Q=66/QAVC=TVC/Q=Q2-10Q+17AC=TC/Q=Q2-10Q+17+66/QMC=TC'=3Q2-

某垄断厂商的产品需求函数为P = 10-3Q,成本函数为TC = Q2 + 2Q,垄断厂商利润最大时的产量、价格和利润

垄断厂商利润最大化的条件是MR=MCMR=dTR/dQ=d(P*Q)/dQ=10-6QMC=dTC/dQ=2Q+2由MR=MC得到10-6Q=2Q+2得到Q=1;P=7利润=TR-TC=4

某企业短期成本函数是TC=Q3-4Q2+8Q+10,求平均可变成本的最小值.

通过对STC(Q)求导,并令STC’(Q)=3Q²-8Q+8=0求得Q,Q代表产量,去掉负值,因为函数为抛物线,开口向上,所以当Q=多少时,STC取最小值为多少我没有计算器,你自己算一下

已知某垄断者的成本函数为TC=8Q+0.05Q2,产品的需求函数为Q=400-20P,求:(1)垄

MC=TC'=8+0.1QP=20-Q/20MR=20-0.1QMR=MC8+0.1Q=20-0.1QQ=60P=17利润π=PQ-TC=60*17-8*60-0.05*60^2=360再问:可不可以

已知垄断企业的成本函数是TC=6Q+0.05Q2,产品需求函数是Q=360-20P,求如果政府试图对垄断企业采取规定产量

若政府试图对垄断企业采取规定,使其达到完全竞争的产量水平,及边际成本定价法因此P=MC6+0.1Q=18-0.05QQ=80P=14TC=480+0.05*6400=600利润=TR-TC=1120-

已知某垄断厂商的成本函数为TC=0.6Q2+3Q+2,反需求函数为P=8-0.4Q.

(1)由题意可得:MC=且MR=8-0.8Q于是,根据利润最大化原则MR=MC有:8-0.8Q=1.2Q+3解得Q=2.5以Q=2.5代入反需求函数P=8-0.4Q,得:P=8-0.4×2.5=7以Q

1、已知某垄断竞争厂商的产品总需求函数为P=9400-4Q,成本函数为TC=4000+3000Q ,Q为产量.求

收入R=QP=-4Q^2+9400Q利润L=R-TC=-4Q^2+6400Q-4000dL/dQ=-8Q+6400令dL/dQ=0得Q=800(1)该厂商的均衡时的产量Q=800(2)该厂商的均衡时的

已知某企业的成本函数为TC = 20Q + 10,产品的市场需求函数是Q = 140- P,试求出

1.固定成本=10;变动成本=20Q.2.销售收入=PQ=140Q-Q^2;利润=销售收入-成本=PQ-TC=-Q^2+120Q+10.3.利润最大化=MAX(-Q^2+120Q+10),对利润求导,

设某完全垄断企业的市场需求函数和成本函数分别为,TC=Q^2+8Q如果能将消费者分隔成两个市场,需求函数分别

MC=2Q+8Q=Q1+Q2=12-0.2P+12.5-0.1P=24.5-0.3PP=245/3-10/3*QMR=245/3-20/3*QMR=MC245/3-20/3*Q=2Q+8Q=8.5P=

已知某垄断厂商的成本函数为TC=0.6Q^2+3Q+2,需求函数为Q=20-2.5P ,求:

垄断厂商的利润最大化,π=p(q)*q-c(q)p=8-2/5q代入上式π=(8-2/5q)*q-0.6q^2-3q-2就一阶导数为0得出q然后根据这个数字,你就可以求得其他的因素,价格收益最大化TR