dx dy=2x 3y的通解

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 18:01:56
dx dy=2x 3y的通解
微分方程dy/dx=y/(x+y^2)的通解?

设t=x/y则x=tydx=tdy+ydtdy/dx=y/(x+y^2)=>dx/dy=x/y+y把dx代入t+ydt/dy=t+yydt/dy=ydt/dy=1t=y+C(C是常数)x=y^2+Cy

求微分方程y'=y/(1+x^2)的通解

y'/y=1/(1+x^2)两边积分logy=arctanx+Cy=e^(arctanx+C)或者写成Ce^(arctanx)C是任意常数

dy/dx=2xy的通解是?

分离得到:dy/y=2xdx两边积分:ln|y|=x^2+C1y=±e^c1 *e^x^2  =Ce^x^2 (C =±e^c1) 图片如下

(2x-y^2)y’=2y的通解

求微分方程(2x-y²)y'=2y的通解由原式得:(2x-y²)dy=2ydx,即有2ydx+(y²-2x)dy=0.(1)P=2y,Q=y²-2x;ͦ

已知x+y=5,x2+y2=13,求代数式x3y+2x2y2+xy3的值.

x3y+2x2y2+xy3=xy(x2+2xy+y2)=xy(x+y)2,∵x+y=5,∴(x+y)2=25,x2+y2+2xy=25,∵x2+y2=13,∴xy=6,∴xy(x+y)2=6×25=1

2y+y=0的通解

等于0(什么叫通解?)

计算:(2x3y)

原式=4x29y2•27y364x3•4xy=34x2.故答案为34x2.

关于反应类型的题目有3种分子,X2,Y2,X3Y那么有个反应:4X2+Y2=X3Y+Y2这是什么反映类型

反应前XY均为0价,反应后化合价有变化,四氧化还原反应.提一句,4X2+Y2=X3Y+Y2去掉Y2的话是4X2=X3Y,这是不可能的,元素本身发生了变化,应该是核反应

已知x+y=4,x2+y2=14,求x3y-2x2y2+xy3的值.

∵x+y=4,∴(x+y)2=16,∴x2+y2+2xy=16,而x2+y2=14,∴xy=1,∴x3y-2x2y2+xy3=xy(x2-2xy+y2)=14-2=12.

高数中关于微分方程的通解问题,求xy'-y=x^2的通解,

解法简单我们知道(y/x)'=(xy'-y)/x^2很容易就可以化简成(y/x)'=1所以解就是(y/x)'=x+C;把x乘过来就是y=x^2+Cx

有这样一道题,计算(2x4-4x3y-x2y2)-2(x4-2x3y-y3)+x2y2的值,其中x=0.25,y=-1;

(2x4-4x3y-x2y2)-2(x4-2x3y-y3)+x2y2=2x4-4x3y-x2y2-2x4+4x3y+2y3+x2y2=2y3,因为化简的结果中不含x,所以原式的值与x值无关.

若x+y=1则代数式x4+6x3y—2x2y+10x2y2—2xy2+6xy3+y4的值等于_____

原式=(x^4-2x²y²+y^4)+6xy(x²+2xy+y²)-2xy(x+y)=(x²-y²)²+6xy(x+y)²

高数 急什么是通解,怎么求列:求y"-2y'=0的通解

满足微分方程的函数y=f(x)称为微分方程的解;通解表示微分方程所有的解,通常用一个带有任意常数的表达式表示.y〃-2y′=0特征方程为λ²-2λ=0解方程,得λ1=0,λ2=2则通解为y=

单项式和多项式请问 4xym-Y3X2-2X3y-5的多项式的常数式是多少?

常数项就是不带有字母的项,所以这个式子中常数项是-5

已知:| x + y + 1| +| xy - 3 | = 0,求代数式xy3 + x3y 的值.

∵|x+y+1|≥0,|xy-3|≥0|x+y+1|+|xy-3|=0,∴x+y+1=0,即x+y=-1xy=3xy3+x3y=xy(x²+y²)=yx[(x+y)²-2

若x-y=6,xy=17/36,则代数式X3y-2x2y2=xy3的值为__ X后面的数字为X的平方

应该是X3y-2x2y2+xy3原式=x3y-2x2y2+xy3=xy(x2-2xy+y2)=xy(x-y)2=17/36*6=17麻烦采纳,谢谢!

已知x+y=4,xy=2,则x3y+x2y2+xy3的值:

x+y=4,xy=2后者平方后二式相加再加后者平方

已知x=√3-√2,y=√3+√2,求x3y+xy3

x3y+xy3=xy(x^2+y^2)=(√3-√2)(√3+√2)((√3-√2)^2)+(√3-√2)^2)=1*(3-2√6+2+3+2√6+2)=10

已知x-y=l,xy=2,求x3y-2x2y2+xy3的值.

∵x-y=l,xy=2,∴x3y-2x2y2+xy3=xy(x2-2xy+y2)=xy(x-y)2=2×1=2.