dy dx-y=2ex

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 19:49:17
dy dx-y=2ex
求由方程xy=ex+y所确定的隐函数的导数dydx

方程两边求关x的导数ddx(xy)=(y+xdydx);     ddxex+y=ex+y(1+dydx);所以有  (y+xdy

求微分方程2y″+y′-y=2ex的通解.

∵微分方程两边除以2,得同解的微分方程y″+12y′−12y=ex对应的齐次方程为y″+12y′−12y=0∴特征方程为r2+12r−12=0,解得特征根为:r1=−1,r2=12∴齐次方程的通解为:

求微分方程y”+y=ex的通解

特征方程为r^2+1=0,r=±i所以y1=C1sinx+C2cosx设y2=Ae^x则y2''=Ae^x2A=1,A=1/2所以y=y1+y2=C1sinx+C2cosx+e^x/2再问:确定吗?怎

X,Y独立,EX=EY=0,DX=DY=1,则E(X+2Y)^2=?

E(X+2Y)^2=E(X^2+4XY+4Y^2)=E(X^2)+4E(XY)+4E(Y^2)=DX+(EX)^2+4EX*EY+4DY+(EY)^2=1+0^2+4*0*0+4*1+0^2=5

设函数y=y(x)由方程ln(x2+y)=x3y+sinx确定,则dydx|

方程两边对x求导得2x+y′x2+y=3x2y+x3y′+cosxy′=2x−(x2+y)(3x2y+cosx)x5+x3y−1由原方程知,x=0时y=1,代入上式得y′|x=0=dydx|x=0=1

设y=Ex -1ncosx,求dy.

y=e^x-lncosx,这是函数的和差以及复合函数的综合求导应用.y'=e^x-(1/cosx)*(cosx)'y'=e^x-(1/cosx)(*-sinx)y'=e^x+tanx所以:dy=(e^

求微分方程y″-2y′-3y=3x+1+ex的一个特解.

微分方程y″-2y′-3y=3x+1+ex的特征方程为:λ2-2λ-3=0,求解可得其特征值为:λ1=-1,λ2=3.对于微分方程y″-2y′-3y=3x+1,①由于0不是方程的特征根,故其特解形式为

英语翻译Prove that the curves y=x^3 and y=(x+1)/(x^2 +4) have ex

y=x³=(x+1)(x²+4)=x³+x²+4x+4x²+4x+4=(x+2)²=0x=-2Thecommonpointis(-2,-8)

设f(x)可微,2=f(x*x-y*y),求一阶偏导eZ/eX,eZ/eY.

eZ/eX=2x*[ef(x*x-y*y)/ex],eZ/eY=-2x*[ef(x*x-y*y)/ey],

求微分方程dydx+y=e

这是一阶线性微分方程,其中P(x)=1,Q(x)=e-x∴通解y=e−∫dx(∫e−x•e∫dxdx+C)=e−x(∫e−x•exdx+C)=e−x(x+C).

matlab solve函数 xmaxr=solve(dydx,x)

dydx要是等式才行吧.如果是的话,这句话就是求这个等式的根,用r表示x.

求y=ex+2的平方的反函数.

e^(x+2):表示e的(x+2)次方y=e^(x+2)ln(y)=x+2x=lny-2反函数是:y=(lnx)-2,其中x>0

直线y=kx与曲线y=2ex相切,则实数k=______.

设切点为(x0,y0),则y0=2ex0,∵y′=(2ex)′=2ex,∴切线斜率k=2ex0,又点(x0,y0)在直线上,代入方程得y0=kx0,即2ex0=2ex0x0,解得x0=1,∴k=2e.

曲线y=ex在点(2,e2)处的切线的横截距为(  )

∵点(2,e2)在曲线上,∴切线的斜率k=y′|x•2=ex|x•2=e2,∴切线的方程为y-e2=e2(x-2).即e2x-y-e2=0.与x轴的交点坐标为(1,0),∴曲线y=ex在点(2,e2)

为什么f(x)=ex的切线方程为y-e2=e2(x-2)

解题思路:分析:根据导数的几何意义求出切线的斜率,再根据直线方程的点斜式方程求出切线方程。解题过程:

y=x^ex,求y的导数

y=x^(e^x)(1)lny=e^xlnx(2)//:对(1)两边取对数y'/y=e^x(lnx+1/x)(3)//:(2)两边对x求导y'=x^(e^x)e^x(lnx+1/x)(4)//:最后结

函数y=-ex的图象(  )

因为点(x,y)和点(x,-y)关于x轴对称,所以y=-ex的图象与y=ex的图象关于x轴对称,故A和B错误;因为点(x,y)和点(-x,-y)关于原点对称,所以y=-ex的图象与y=e-x的图象关于

设函数y=y(x)由方程ex+y+cos(xy)=0确定,则dydx

在方程ex+y+cos(xy)=0左右两边同时对x求导,得:ex+y(1+y′)-sin(xy)•(y+xy′)=0,化简求得:y′=dydx=ysin(xy)−ex+yex+y−xsin(xy).