dy dx-y=xy

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 19:27:14
dy dx-y=xy
求由方程xy=ex+y所确定的隐函数的导数dydx

方程两边求关x的导数ddx(xy)=(y+xdydx);     ddxex+y=ex+y(1+dydx);所以有  (y+xdy

求解微分方程dydx

由微分方程dydx=2xy,得dyy=2xdx(y≠0)两边积分得:ln|y|=x2+C1即y=Cex2(C为任意常数)

已知x-xy=8,xy-y=-9,求x+y-2xy的值

x-xy=8(1)xy-y=-9(2)则有(1)-(2):X-XY-XY+Y=X+Y-2XY=8-(-9)=17

先化简,再求值 ⒈2(Xy+Xy)-3(Xy-xy)-4Xy,其中X=1,y=-1

1.2(Xy+Xy)-3(Xy-xy)-4Xy=2*2xy-0-4xy=4xy-4xy=02.1/2ab-5aC-(3acb)+(3aC-4aC)=1/2ab-5ac-3acb-ac=1/2ab-6a

已知xy^2=-2,求-xy(x^2y^5-xy^3-y)的值.

-xy(x^2y^5-xy^3-y)=-(xy^2)^3+(xy^2)^2+xy^2=-(-2)^3+4-2=8+4-2=10

X-Y=5,XY=3.XY是多少?

Y=X-5XY=X²-5X=3X²-5X-3=0X=(5±√37)/2Y=X-5X=(5-√37)/2,Y=(-5-√37)/2X=(5+√37)/2,Y=(-5+√37)/2

设函数y=y(x)由方程ln(x2+y)=x3y+sinx确定,则dydx|

方程两边对x求导得2x+y′x2+y=3x2y+x3y′+cosxy′=2x−(x2+y)(3x2y+cosx)x5+x3y−1由原方程知,x=0时y=1,代入上式得y′|x=0=dydx|x=0=1

xy'=y+xy的

xdy=(y+xy)dxdy/y=((1+x)/x)dxln|y|=ln|x|+x+cy=±e^(ln|x|+x+c)其中c是常数再问:真还不理解我们是选择题:y=cxe^xy=c+x-x^2y=cs

已知:xy+x=-1,xy-y=-2.

(1)∵xy+x=-1①,xy-y=-2②,∴①-②得x+y=1;(2)先把xy+x=-1,xy-y=-2的值代入代数式,得原式=-x-[2y-1+3x]+2[x+4]=-x-2y+1-3x+2x+8

实数xy满足y>=1 y

答案:5.(用线性规划的知识解决)由y≥1,y≤2x-1作出可行域(∵直线x+y=m不确定,∴可行域暂时不确定,但不影响解题)∵目标函数z=x-y的最小值为-1∴y=x-z截距最大时,z最小,为-1,

求微分方程dydx+y=e

这是一阶线性微分方程,其中P(x)=1,Q(x)=e-x∴通解y=e−∫dx(∫e−x•e∫dxdx+C)=e−x(∫e−x•exdx+C)=e−x(x+C).

已知x-y=4xy,则2x+3xy-2yx-2xy-y

∵x-y=4xy,∴2x+3xy-2yx-2xy-y=2(x-y)+3xyx-y-2xy=8xy+3xy4xy-2xy=112.故答案为:112.

已知xy>0,证明xy+xy/1+x/y+y/x>=4

xy+1/xy>=2√(xy*1/xy)=2(当xy=1/xy即xy=1时取等号)x/y+y/x>=2√(x/y*y/x)=2(当x/y=y/x即x=y取等号)当x=y=1时可以同时满足两项的等号要求

xy+x=20 xy+y=18

由题意得:X=Y+2.那么Y(Y+2)+Y+2=20(Y+2)×(Y+1)=20所以y=3那么x=5可待入xy+y=18就不对了.(Y+2)×(Y+1)=20,Y应该是-6,X是-4,答案就对了.X=

X²+2xy+y²/xy乘x²-2xy+y²/xy+y²=

X²+2xy+y²/xy乘x²-2xy+y²/xy+y²=(x+y)²/xy×(x-y)²/y(x+y)=(x+y)(x-y)&#

matlab solve函数 xmaxr=solve(dydx,x)

dydx要是等式才行吧.如果是的话,这句话就是求这个等式的根,用r表示x.

X+y=3 xy=-5 Xy=?

X+y=3xy=-5X-y=?(x-y)^2=(X+y)^2-4xy=9+20=29则x-y=±根号29

已知xy^2=-2 求-xy(x^2y^5-xy^3-y)

原式=-xy²(x²y^4-xy²-1)∵xy²=-2原式=2((-2)²-(-2)-1)=10

设函数y=y(x)由方程ex+y+cos(xy)=0确定,则dydx

在方程ex+y+cos(xy)=0左右两边同时对x求导,得:ex+y(1+y′)-sin(xy)•(y+xy′)=0,化简求得:y′=dydx=ysin(xy)−ex+yex+y−xsin(xy).