dy dx=e^y (2y-xe^y)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 02:08:28
方程两边求关x的导数ddx(xy)=(y+xdydx); ddxex+y=ex+y(1+dydx);所以有 (y+xdy
y=e^x的导数y'=e^xy=e^(x^2)的导数y'=e^(x^2)*(x^2)'=2xe^(x^2)故y=xe^(x^2)的导数是:y'=x'*e^(x^2)+x*[e^(x^2)]'=e^(x
你这个直接求积分吧用分步积分即可y=∫xe^xdx=∫xde^x=x*e^x-∫e^xdx=x*e^x-e^x+C(c为常数)
∵y''-3y'+2y=0的特征方程是r²-3r+2=0,则r1=1,r2=2∴y''-3y'+2y=0的通解是y=C1e^x+C2e^(2x)(C1,C2是积分常数)设y''-3y'+2y
我更正一下楼上的小错误,结果不是那样的,他算对了,但是漏了一个很重要的东西,这是很常见的错误,不要再犯!结果是dy=[e^y/(1-xe^y)]dx
方程两边对x求导得2x+y′x2+y=3x2y+x3y′+cosxy′=2x−(x2+y)(3x2y+cosx)x5+x3y−1由原方程知,x=0时y=1,代入上式得y′|x=0=dydx|x=0=1
是周期积分,转化为极坐标积分.
e^ydx+(xe^y+2y)dy=d(xe^y)+d(y^2)=0------全微分积分可得xe^y+y^2=0
1.先解齐线性方程xy'+(1-x)y=0的通解,得到y=ce^(x-lnx),(c为任意常数)……①其次利用常数变易法求非齐线性方程xy'+(1-x)y=e^2x的通解,把c看成是c(x),微分①后
这是一阶线性微分方程,其中P(x)=1,Q(x)=e-x∴通解y=e−∫dx(∫e−x•e∫dxdx+C)=e−x(∫e−x•exdx+C)=e−x(x+C).
xe^f(u)=e^yx=e^[y-f(u)]1=e^[y-f(u)][y'-f'(u)u']y'=e^[f(u)-y]+f'(u)u'y''={e^[f(u)-y]+f'(u)u'}=e^[f(u)
曲线积分法:自由组合:这个不容易想到,靠经验了
y'=(x)'e^y+x(e^y)'y'=e^y+xe^y*y'再问:x(e^y)'=xe^y*y'?再答:对,因为y是x的函数,根据复合函数求导法,可得
用Green公式:∫CPdx+Qdy=∫∫D(aQ/ax--aP/ay)dxdy=∫∫D(y^3+e^y--x^3--e^y)dxdy=∫∫D(y^3--x^3)dxdy对称性积分区域D关于x,y轴都
2yy'-xy'e^y=e^y2yy'=(xy'+1)e^y(y^2)'=(xe^y)'y^2=xe^y+C
在方程ex+y+cos(xy)=0左右两边同时对x求导,得:ex+y(1+y′)-sin(xy)•(y+xy′)=0,化简求得:y′=dydx=ysin(xy)−ex+yex+y−xsin(xy).