根号x²-9 x不定积分是多少
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 04:07:26
令(1-x)/x=t^2,则:1-x=xt^2,∴(1+t^2)x=1,∴x=1/(1+t^2),∴dx=[2t/(1+t^2)^2]dt.∴∫{1/√[x(1-x)]}dx=∫{[(1-x)+x]/
令t=√x,x=t^2.dx=2tdt.∫sin√xdx=∫sintdt^2=2∫tsintdt=-2∫tdcost=-2(tcost-∫costdt)(分部积分)=-2(tcost-sint)+C=
∫√(x^2+1)dx令x=tanz,dx=sec^2zdz原式=∫sec^3zdz=(1/2)tanzsecz+(1/2)∫seczdz=(1/2)tanzsecz+(1/2)ln(secz+tan
$x[(x)^(1/2)+1)]dx=$[(x^(3/2)+x]dx=(5/2)*x^(5/2)+x^2/2(积分号9到4)=(5/2)*(9)^(5/2)+(9)^2/2-(5/2)*(4)^(5/
用分步积分法∫ln(x+1)/√xdx=2∫ln(x+1)d√x=2ln(x+1)*√x-2∫√xdln(x+1)=2ln(x+1)*√x-2∫√x/(x+1)dx对于∫√x/(x+1)dx令√x=t
令t=√(x^2-9),t^2=x^2-9,2tdt=2xdxtdt=xdx积分号下:√(x^2-9)dx/x=√(x^2-9)xdx/x^2(分子分母同乘以x)=t*tdt/(t^2+9)=t^2d
三角换元过程如下图:
令√(e^x+1)=tx=ln(t-1)dx=dt/(t-1)代入得原式=∫tdt/(t-1)=∫[1+1/(t-1)]dt=t+ln(t-1)+C自己反代吧
∫x^3/√(1-x^2)dxletx=sinydx=cosydy∫x^3/√(1-x^2)dx=∫(siny)^3dy=-∫(siny)^2dcosy=-∫[1-(cosy)^2]dcosy=(co
∫lnx/√xdx=2∫lnxd√x=2lnx√x-2∫1/√xdx=2lnx√x-4√x+C
1/x是lnx的导数,所以1/xdx=d(lnx).∫ln(√x)/xdx=1/2×∫lnxdlnx=1/2×1/2×(lnx)^2+C
dx^(1/2)=(1/2)x^(-1/2)dx∫x^(-1/2)lnxdx=2∫lnxdx^(1/2)
∫√(x²-9)/xdx=√(x²-9)-3arcsec(x/3)+C
∫x^9/√(2-x^20)dxletx^10=(√2)siny10x^9dx=(√2)cosydy∫x^9/√(2-x^20)dx=(1/10)∫dy=(1/10)y+C=(1/10)arcsiny
令x=3/(2cosu),则:cosu=3/(2x),dx=3{sinu/[2(cosu)^2]}du.∴∫{1/[x^2√(4x^2-9)]}dx=∫{(2cosu/3)^2/√[9/(cosu)^
分步积分法原式=xarctan√x-∫xdarctan√x=xarctan√x-∫x/(1+x)dx=xarctan√x-∫(x+1-1)/(1+x)dx=xarctan√x-∫[1-1/(1+x)]