D是半椭圆形闭区域:x^2 a^2 y^2 b^2≤1
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 00:03:58
选D利用二重积分的积分区域对称性
∫)0到4∫(x^2+y^2)再根号)0到4dxdy减去∫)0到1∫(x^2+y^2)再根号)0到1dxdy就行了
计算椭圆的面积
算出y=1-x^2y=2x^2-5方程组的焦点,画图,看他们围成的区域对区域使用求质心的公式进行计算再问:�鷳�������̡�лл��
使用直角坐标,∫∫(x^2-y^2)dxdy=∫[0,π]dx∫[0,sinx](x^2-y^2)dy=∫[0,π](x^2y-1/3y^3)|[0,sinx]dx=∫[0,π](x^2sinx-1/
对称性有两个要求,一是积分区间(区域)关于某对称轴对称,而是积分函数按同样对称轴对称本题积分区域是对称的,但积分函数关于左右是不对称的.即e^(x+y)≠e^(-x+y) 上下实
{y=x²、y=0{x=1∫∫xydxdy=∫[0→1]dx∫[0→x²]xydy=∫[0→1]x*[y²/2]:[0→x²]dx=∫[0→1]x/2*x
一楼在做完第一个积分时少了个2倍,二楼的结果是正确的.不过一楼的方法更好些,二楼的方法一般的工科学生不会用.
第一题的积分区域没写清楚,无法做.第二题先画图,然后知道所求的结果可以写为:2*[∫(1-x*x/4)dx-∫(1-x*x)dx]前面定积分的下限是0,上限是2.后面的定积分的下限是0,上限是1.这样
∫∫x/ydxdy=∫[0,2a](1/y)dy∫[0,√(2ay-y^2)]xdx注:∫[a,b]表示从a到b的积分.而∫[0,√(2ay-y^2)]xdx=x^2/2|[0,√(2ay-y^2)]
看图片,不懂再问.再问:谢谢,我先看看
不等式组{0≤x≤√2,y≤2,x≤√2y}的区域为梯形OABC,如图A(√2,1),B(√2,2),C(0,2)z=OM·OA=(x,y)·(√2,1)=√2x+y令z=0,作√2x+y=0直线,可
用极坐标∫∫e^(x^2+y^2)dδ=∫(0~2π)dθ∫(0~2)e^(ρ^2)ρdρ=2π∫(0~2)e^(ρ^2)ρdρ被积函数的原函数是1/2×e^(ρ^2),所以结果是π(e^4-1)
把二重积分化为累次积分∫(1到2)[∫(y到2)xydx]dy=∫(1到2)[(1/2)yx^2|(y到2)]dy=∫(1到2)[2y-(1/2)y^3]dy=y^2-(1/8)y^4|(1到2)=9