椭圆面x^2 y^2=1被平面x y z=1截成一椭圆,求这椭圆的长半轴和短半轴
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 00:11:19
直线l不与坐标轴平行,设为y=kx+b(k≠0),M(x1,y1),N(x2,y2)联立方程:y=kx+by29+x2=1则(9+k2)x2+2kbx+b2-9=0△=(2kb)2-4(
首先这两个都是一次函数,所以都是直线,只要对每个函数取两个点,连接就是了最方便的取点就是取直线与坐标轴的交点,第一题令x=0,代入得y=3第一个点为A(0,3),令y=0,代入得x=-3/2第二个点为
椭球面f(x,y,z)=x^2+2y^2+z^2;əf/əx=2x;əf/əy=4y;əf/əz=2z;即椭球面f(x,y,z)的切平面法向
说明平面与坐标面的·节距是a=2,b=1,c=1易得底面三角形面积1/2×2×1=1高为1,所以易得所围成体积O-ABC为1×1×1/3=1/3
求由x=0y=0x+y=1围成的三棱柱的体积下底为z=0上底为z=x^2+y^2(圆锥)=∫(0,1)dx∫(0,1-x)dy∫(0,x^2+y^2)dz=∫(0,1)dx∫(0,1-x)[z](0,
我做出来是长半轴为√(3(2+√3)),短半轴是√(3(2-√3)),用拉格朗日乘数法做的.如果你觉得答案靠谱就追问,我再把过程贴上去.再问:�鷳��дһ�¹���лл再答:����֮���ֵ�һ�
x2;+y2;=1被平面x+y+z=1截成一个椭圆,求该椭圆的长半轴与短半轴长.平面x+y+z-1=0与xoy平面的夹角φ的余弦cosφ=1/√3.故所
由点到直线的距离公式可知:O到AB的距离是b/(√1+k²),|AB|=2,三角形OAB的面积为1,所以可得:b/(√1+k²)=1,即b=√1+k²(这里b应该加上绝对
二重积分的几何意义是曲顶柱体的体积:曲顶柱体的顶面是:z=x^2+y^2,底面区域D是xOy面内由x轴、y轴、x+y=1所围V=∫∫(x^2+y^2)dxdy=∫[0,1]∫[0,1](x^2+y^2
这是一道利用椭圆的参数方程的题目,先化简方程:(x-1)^2/9+(y+1)^2=1则得到椭圆的参数方程为:x=3cosa+3y=sina-1则P的坐标为(3cosa+3,sina-1)用点到直线的距
最近点(-0.5,-0.5,0.5)最远点(0.5,0.5,-0.5)先换元:把√2x换成a,则a²+y²+z²=1表示球面.点(√2,5,1)在面√2(a-√2)+(y
设f(x,y,z)=x^2+2y^2+z^2-1,偏导数:f'x=2x,f'y=4y,f'z=2z,椭球面法向量:n=(2x,4y,2x)
设x=acosθ,y=bsinθ,则x'=-asinθ,y'=bcosθ,x'^2+y'^2=a^2sin^2θ+b^2cos^2θ)椭圆周长=∫(θ从0到2π)根号[a^2sin^2θ+b^2cos
直线y=x=1交椭圆于A、B两点是直线y=x+1交椭圆于A,B两点吧?椭圆中心为原点O,焦点在x轴上,设椭圆方程为x^2/a^2+y^2/b^2=1又由离心率e=根号2\2可知c^2=1/2*a^2从
∵Z=2x^2+y^2∴Zx'│m=4,Zy'=-2∴切平面的法向量是(4,-2,-1)故所求切平面方程是4(x-1)-2(y+1)-(z-3)=0,即4x-2y-z=3所求法线方程是(x-1)/4=
x+y+x^2+y^2=1(x+1/2)^2+(y+1/2)^2=1/2此图形表示以(-1/2,-1/2)为圆心,半径为根2/2的圆.它经过原点.所以最短距离为0.最长距离为2r=根2
首先确定椭圆的中心,因为椭球面的中心在原点O,平面也过原点O,所以椭圆的中心也在原点O根据题意,只要求出椭圆上到中心O的距离d^2=x^2+y^2+z^2的最大值和最小值即可.根据条件极值的求法,设P
x²+2y+z²=1F(x,y,z)=x²+2y+z²-1Fx=2xFy=2Fz=2z设切点为(x0,y0,z0)则2x0/1=2/(-1)=2z0/2所以x0
x²+y²=1被平面x+y+z=1截成一个椭圆,求该椭圆的长半轴与短半轴长.平面x+y+z-1=0与xoy平面的夹角φ的余弦cosφ=1/√3.故所截椭圆的长轴长=2/cosφ=2
把x=2代入椭球面方程得1/4+y^2/12+z^2/4=1,y^2/12+z^2/4=3/4,两边都乘以4/3,得y^2/9+z^2/3=1,∴椭圆的长半轴=3,短半轴=√3,顶点为(2,土3,0)