椭球面x^2 y^2 z^2-yz=1

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 17:54:25
椭球面x^2 y^2 z^2-yz=1
求(2X+Z-Y)/(X^2-XY+XZ-YZ)-(2X+Y+Z)/(X^2+XY+XZ+YZ)

=[(X+Z)+(X-Y)]/[X(X-Y)+Z(X-Y)]-[(X+Y)+(X+Z)]/[X(X+Y)+Z(X+Y)]=[(X+Z)+(X-Y)]/[(X+Z)(X-Y)]-[(X+Y)+(X+Z)

求椭球面x^2+2y^2+x^2上平行于平面x-y+2z=0的切平面方程

椭球面f(x,y,z)=x^2+2y^2+z^2;əf/əx=2x;əf/əy=4y;əf/əz=2z;即椭球面f(x,y,z)的切平面法向

f(x,y,z)=yz+xz使得,y^2+z^2=1,yz=3,求f最大值

f(x,y,z)=yz+xz使得,y^2+z^2=1,yz=3令F(x,y,z)=yz+xz+a(y²+z²-1)+b(yz-3)Fx=z=0Fy=z+2ay+bz=0Fz=y+x

证明 (x+y+z)^2>3(xy+yz+zx)

(x+y+z)^2=x^2+y^2+z^2+2xy+2yz+2xz>3(xy+yz+zx)所以只要求证x^2+y^2+z^2>xy+yz+zx2(x^2+y^2+z^2)>2(xy+yz+zx)(x^

因式分解 (x+y+z)^2+yz(y+z)+xyz

=(x+y+z)^2+yz(y+z+x)=(x+y+z)(x+y+z+yz)

因式分解x²-y²-z²+2yz

解x²-y²-z²+2yz=x²-(y²+z²-2yz)=x²-(y-z)²=(x+y-z)(x-y+z)

高数有关方向导数问题在椭球面2x^2+2y^2+z^2=1上求一点使函数f(x,y,z)=x^2+y^2+z^2在该点沿

设函数f(x,y,z)=x^2+y^2+z^2在点Q(x,y,z)处沿向量P的方向导数最大,因为函数在点Q处沿任意方向的方向导数的最大值是在梯度方向上取得,函数的梯度是向量(fx,fy,fz)=2(x

化简(2x-y-z/x^2-xy-xz+yz)+(2y-x-z/y^2-xy-yz+xz)+(2x-x-y/z^2-xz

原式=[(x--y)+(x--z)]/(x--y)(x--z)+[(y--x)+(y--z)]/(y--x)(y--z)+[(z--x)+(z--y)]/(z--x)(z--y)=1/(x--z)+1

求椭球面 x^2+2y^2+z^2=1 上平行于平面 x-y+2z=0 的切平面方程

设f(x,y,z)=x^2+2y^2+z^2-1,偏导数:f'x=2x,f'y=4y,f'z=2z,椭球面法向量:n=(2x,4y,2x)

求函数u=x^2+y^2+z^2在椭球面x^2/a^2+y^2/b^2+z^2/c^2=1上点M.(x.,y.,z.)处

设F=x^2/a^2+y^2/b^2+z^2/c^2-1则其法线方向为:(Fx,Fy,Fz)=(2x/a²,2y/b²,2z/c²),此方向就是外法线方向将(2x/a&#

求椭球面x²+2y+z²=1上平行于平面x-y+2z=0的切平面方程,

x²+2y+z²=1F(x,y,z)=x²+2y+z²-1Fx=2xFy=2Fz=2z设切点为(x0,y0,z0)则2x0/1=2/(-1)=2z0/2所以x0

(2X+Z-Y)/(X^2-XY+XZ-YZ)-(Y-Z)/(X^2-XY-XZ+YZ)

答案是:(2*X)/((X-Z)*(X+Z))再问:解题过程给我写下1再答:=(2X+Z-Y)/[(x-y)(x+z)]-(y-z)/[(x-z)(x-y)]=[(2x+z-y)(x-z)-(y-z)

1'x^2-y^2-z^2-2yz=

1.=x^2-(y+z)^2=(x+y+z)(x-y-z)2.a^2-b^2+c^2-2ac=(a-c)^2-b^2=(a-c-b)(a-c+b)ac-b可知原式

求平面x=2与椭球面x^2/16+y^2/12+z^2/4=1相交所得椭圆的半轴与顶点

把x=2代入椭球面方程得1/4+y^2/12+z^2/4=1,y^2/12+z^2/4=3/4,两边都乘以4/3,得y^2/9+z^2/3=1,∴椭圆的长半轴=3,短半轴=√3,顶点为(2,土3,0)

z=x^2+y^2表示的二次曲面是椭球面,柱面,圆锥面,还是抛物面?

图像过原点当x^2+y^2增大即圆的半径增大时z也增大所以它的图像是倒立的圆锥面顶点在原点

化简x^2-yz/[x^2-(y+z)x+yz]+y^2-zx/[y^2-(z+x)y+zx]+z^2-xy/[z^2-

(x^2-yz)/[x^2-(y+z)x+yz]+(y^2-zx)/[y^2-(z+x)y+zx]+(z^2-xy)/[z^2-(x+y)z+xy]=(yz-x^2)/(x-y)(z-x)+(zx-y