正四面体A-BCD的棱长为2E.F分别为AB,CD的中点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 04:12:13
取CD中点F,连接EF、AF,可得∵△BCD中E、F分别为BC、CD的中点,∴EF∥BD,EF=12BD因此,∠AEF(或其补角)即为异面直线AE与BD所成的角,设正四面体棱长为a,由题意可得AF=A
过A做面BCD的垂线交于点E,连结BE,过E做BC的垂线交于点F,连结AF.F为BC中点,∠EBF=301、点A到面BCD距离:2√6/32、体积:2√2/33、正弦:sin∠ABE=√6/34、余弦
过A作AP⊥BD于P点,连接PC、CE过E作EF⊥BD于F,连接CF、EF,则CE和平面BCD所成的夹角为角ECF设正四面体的边长为a,则在正三角形ABD中,高为AP=a√3/2EF为三角形APD的中
过点D作DF⊥BC于F,则DF=√3/2a过点A作AH⊥平面BCD,则H在DF上且DH=√3/3a由勾股定理知AH=√6/3a过E作EG⊥平面BCD,则G为DH中点,且EG=√6/6a又CE=√3/2
我觉得第一位那位小同学就解的很好啊
设F为BC的中点,G为E在平面BCD上的垂足.sin∠EFD=(1/2)/(√3/2)=1/√3.cos∠EFD=√(2/3).EF=FD×cos∠EFD=(√3/2)×√(2/3)=1/√2.FG=
cosDOM=cos(DAC+ADE)=cosDACcosADE-sinDACsinADE=10^(1/2)/5-10^(1/2)/10=10^(1/2)/1010^(1/2)表示10开根号
如图,取AB的中点G,连接FG,EG则∠GEF是直线EF和直线AC所成的角,EG=12BD,FG=12AC,∵BD=AC∴EG=FG,又∵空间四边形的四条边长及两对角线的长都相等∴AC⊥BD即EG⊥F
过A作AP⊥BD于P点,连接PC、CE过E作EF⊥BD于F,连接CF、EF,则CE和平面BCD所成的夹角为角ECF设正四面体的边长为a,则在正三角形ABD中,高为AP=a
应该是外接球和内切球,不是圆.设正四面体P-ABC,作PH⊥底面ABC,垂足H,作CD⊥AB,H在CD上,H是正三角形ABC的外(内、重、垂)心,CH=2CD/3=(a√3/2)*(2/3)=√3a/
正四面体重心到三角形顶点距离为2/3*(根号3/2)*a=根号3/3*a正四面体h=根号[a^2-(根号3/3*a)^2]=根号6/3*a底面正三角形面积S=根号3/4*a^2体积V=S*h/3=(根
很简单的,你作BC的中点G,连接FG并延长到H,使得DG=GH,之后连接EH,EG根据中位线定理可知DB平行且等于2FG=FH在三角形EFH中,根据向量的加法可知|FH(向量)+EF(向量)|=|EH
(1)∵棱长为a的正四面体中AB=BC=CD=BD=AC=AD=a在等边三角形BCD中,CD边的上高BM=32a过A作底面BCD上的高,则垂足O为底面BCD的重心则BO=23BM=33a则AO=AB2
希望你把内切球和外接球半径的结论和推到过程识记下来.内切球12分支根号6倍的a,外接球4分支根号6a,记住结论,你就能顺利解题了
先求出正四面体体积,作高DH,H为正三角形ABC的外心(重心),连结BH,延长交AC于Q,设棱长为a,BQ=√3a/2,BH=2BQ/3=√3a/3,DH=√(AD^2-BH^2)=√6a/3,VD-
四面体ABEP的体积=Sabe*Hp=Sbpe*Ha;Sabe:三角形abe的面积;Hp:p到平面ABE的距离;Sbpe:三角形bpe的面积;Ha:a到平面bpe的距离;易知:Sbpe=(3/8)*S
在图形中过点B作BE垂直于DC因为BC=CD=BD=1,所以BE垂直平分CD,交CD于点E,E为垂足,BE=二分之根号3过E作EF平行AD,交AC于F,因为AD=CD=1AC=根号2所以等腰直角三角形