正定矩阵中的元素可以有负数么
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 07:56:05
对的.因为就是在对称矩阵的范围内讨论一个矩阵是不是正定的.
不必须,例如所有满足对角线元素都是正数的对角矩阵都是对称正定的
A(i,i)=e_i^T*A*e_i>0其中e_i是单位阵的第i列
好像可以用max()吧?
线性代数考虑的范围是实数正定的概念来源于二次型故一般说来正定是实对称矩阵(线性代数范围)(ABC)^T=C^TB^TA^T
对于对称矩阵A,若对任意非零向量x,都有x*AX>0成立,则称A为正定.如果A是正定矩阵,那么a[i][i]一定大于0.因为,a[i][i]=ei*Aei>0.其中,ei为第i个单位向量.
过渡矩阵:当V可以表示一个线性空间时,在其空间内一点都可以用它的任意两个基表示,而且两个基的表示形式是A、B,则由A基到B基可以表示成:B=PA,P为过渡矩阵.正定矩阵:设M是n阶实系数对称矩阵,如果
再答:正定矩阵的充要条件是所有顺序主子式大于0
一.定义 因为正定二次型与正定矩阵有密切的联系,所以在定义正定矩阵之前,让我们先定义正定二次型: 设有二次型,如果对任何x0都有f(x)>0(0),则称f(x)为正定(半正定)二次型. 相应的,
反证法:若正定矩阵A对角线出现aii1,则在A的左右各乘以一个矩阵E(1i),得到另一矩阵B,E(1i)表示将E的第一行与第一列交换后得到的初等矩阵,左右各乘这个初等矩阵后相当于将aii这个元素交换到
设你说的那个矩阵是A,由正交矩阵的定义,有(A的转置)*A=I,I是单位阵.(A的转置)*A的第(1,1)个元素就是a1^2+a2^2+a3^2=1,(A的转置)*A的第(1,3)个元素就是a1c1+
如果这个矩阵可以化为对角矩阵的话那求特征值吧,它的特征值就是对角矩阵的元素,前提是该矩阵是可化为对角矩阵的,如果是对称矩阵,那对称矩阵一定可以化为对角矩阵再问:亲你说的跟我问的不是一码事啊
一定是正定矩阵.因为满足矩阵的方程也满足特征方程,所以把A=r代入,r为特征值,所以特征值都是正数.所以是正定矩阵.很高兴为您解答,liamqy为您答疑解惑如果本题有什么不明白可以追问,再问:可答案是
XMX>0,就称M正定(PositiveDefinite).正定矩阵在相合变换下可化为标准特征值都在主对角线上运算你知道的吧.看图片正定矩阵的一些
线性代数!
知识点:若f(x1,...,xn)正定,则f(x1,...,xk)也正定--这可由定义得进一步可得f(xk)=akkxk^2也正定所以akk>0.事实上,A的所有主子式都大于0(特别是顺序主子式)供参
设M是n阶实系数对称矩阵,如果对任何非零向量,X=(x_1,...x_n)都有X′MX>0,就称M正定(PositiveDefinite).所有特征值大于零的对称矩阵(或厄米矩阵)也是正定矩阵
只要是对称矩阵就能特征值分解.线性代数书上都会讲这个结论.如果A是半正定阵的话,那么D的对角元一定是非负数.如果手头有线性代数的书可以翻看一下,一定会有一章讲对称阵的正交对角化问题的.
是的