正弦定理a sinA=b sinB=c sinC等价于什么

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 10:06:51
正弦定理a sinA=b sinB=c sinC等价于什么
三角函数(正弦余弦定理)

a=4k,b=5k,c=6kcosA=(b²+c²-a²)/2bc=3/4sinA=√(1-cos²A)=√7/4所以S=1/2bcsinA15√7=1/2*5

在△ABC中,a,b,c分别是三内角A,B,C所对三边,已知bsinB+csinC-asinA=bsin(A+B).

1、角A为60度,相信你已知道怎么求的,不赘述;2、cosB+cosC=1,即cosB+cos(120-B)=1,和差化积,弄成关于B的方程,求出B、C的值S=bcsinA/2再问:第二问能不能解释的

正弦余弦定理

解题思路:根据题目条件,由余弦定理可求解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/includ

正弦定理和余弦定理

解题思路:综合运用正弦定理及余弦定理解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include

余弦定理证明正弦定理

正弦定理证明步骤1在锐角△ABC中,设BC=a,AC=b,AB=c.作CH⊥AB余弦定理平面几何证法在任意△ABC中做AD⊥BC.∠C所对的边为c,∠B

正弦定理(正弦定理)

解题思路:正弦定理解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include/readq.ph

三角形 正弦 余弦定理

(1)cosA=(b^2+c^2-a^2)/2bc=√3.bc/2bc=√3A=π/6(2)2sinBcosC-sin(B-C)=2sinBcosC-sinBcos+cosBsinC=sin(B+C)

己知△ABC的内角A、B、C的对边长分别为a、b、c.且asinA+csinC-2asinC=bsinB,

(1)∵asinA+csinC-2asinC=bsinB,∴由正弦定理得a2+c2-2ac=b2∴cosB=a2+c2-b22ac=22∵B∈(0,π),∴B=π4;(2)∵sinA=sin(45°+

1.已知a,b,c分别为△abc的三个内角A,B,C的对边,且asinA+bsinB-csinC=bsinA,则角C大小

1.a/sina=b/sinb=c/sinc=2r,sina=a/2r..a^2+b^2-c^2=ab,cosc=1/2,c=60或1202.a+c=2b,cos60=1/2=a^2+b^2-c^2/

正弦定理(正弦定理。)

解题思路:根据题目条件,由正弦定理可求。解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/inclu

三角函数 正弦余弦定理

解(a³+b³-c³)/(a+b-c)=c²a³+b³-c³=(a+b-c)c²=(a+b)c²-c³

正弦余弦定理公式,

三角函数公式:锐角三角函数公式sinα=∠α的对边/斜边cosα=∠α的邻边/斜边tanα=∠α的对边/∠α的邻边cotα=∠α的邻边/∠α的对边倍角公式Sin2A=2SinA•CosAC

是一道平面向量题!在三角形ABC中,A+B=60度,外接圆的半径为R,求asinA+bsinB的范围.

结果:[R,3/2*R)说明:下面的π是派而不是n由正弦定理得a/sinA=b/sinB=2R所以a=2R*sinAb=2R*sinB代入asinA+bsinB得asinA+bsinB=2R*sinA

余弦定理,正弦定理

解题思路:该题考查了两角和与差的正弦公式及正弦定理等问题,有一定的计算量属中档题解题过程:

在△ABC中,A、B、C的对边分别为a、b、c,且asinA+(c-a)sinC=bsinB.(1)求角B的值; (2)

典型的正弦定理和余弦定理应用题由正弦定理上式可变化为a*a+(c-a)*c=b*b即a^2+c^2-b^2=ac由余弦定理可知2cosB=1cosB=1/2B=60°向量BA*BC=|BA|*|BC|

1、在RT三角形ABC中,∠C=90°,a,b,c分别为∠A,∠B,∠C的对边,则asinA+bsinB=

1、在RT三角形ABC中,∠C=90°,a,b,c分别为∠A,∠B,∠C的对边,则asinA+bsinB=c2、已知在三角形ABC中,AC=4,BC=3,AB=5,则sinB=4/53、在rt三角形A

已知锐角三角形ABC中,bsinB-asinA=(b-c)sinC,其中a,b,c分别为内角A\B\C的对边.①求角A的

在三角形ABC中,由正弦定理可得:a/sinA=b/sinB=c/sinC=2R又:bsinB-asinA=(b-c)sinC则:b*(b/2R)-a*(a/2R)=(b-c)*(c/2R)b^2-a

急死了在△ABC中asinA+csinC-根号2asinC=bsinB,求B

根据正弦定理,设a/sinA=b/sinB=c/sinC=k则sinA=a/ksinB=b/KsinC=c/k代入已知条件asinA+csinC-根号2asinC=bsinB得a^2+c^2-√2ac

正弦定理

解题思路:根据题目条件,由正弦,余弦定理可求解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/inc