正方形ABCD中,E为AB上任意一点,连接CE,过D作DF垂直CE于F,
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 12:31:25
由题意知,PD=PB,所以PE+PD=PB+PE,当P在直线BE上时,PB+PE为最短(三角形的两边之和大于第三边),此时PB+PE=BE又角DAB=60度,AB=1知三角形ABD为等边三角形,所以B
在BC上找中点F,连接DF,直线最短.即:PE+PD=DF=3的平方根/2,证明:连接PE,PF,AC为角DCF的角平分线,角DCA=ACB=30度CE=CF,CP=CP,相似三角形原理,三角形DCP
设正方形ABCD的边长为2a,∵E是AB的中点,∴BE=a,∴CE=BE2+BC2=5a,∵BF⊥CE,∴∠EBC=∠BFC=90°,∵∠ECB=∠BCF,∴△BCF∽△EBC.∴BC:EC=2:5.
答案为二分之根号三!文字很难表达,图形画不到!你什么邮箱,我可以发给你!不过你没有分的?
(1)CD⊥ADP∴CD⊥APEF∥=AP/2﹙中位线﹚∴EF⊥CD⑵设PD=1取坐标系D﹙000﹚A﹙100﹚C﹙010﹚P﹙001﹚设G﹙a,0,b﹚∈PAD则F﹙1/2,1/2,1/2﹚GF=﹛
延长DP交EF于点M连接BP∵ABCD是正方形∴△CDP≌△CBP∴∠CDP=∠CBP∵BFPE是矩形∴∠CBP=∠PEF∴∠PEF=∠CDP∵PF‖CD∴∠MPF=∠CDP=∠PEF∵∠FPM+∠E
(2)做AM垂直PB交PB于点M,连接MC因为PD=DC,PD垂直底面ABCD,设正方形边长a易得PA=PC=√2a且三角形PAB与三角形PAC全等所以AM垂直PB,MC垂直PB即角AMC为所求角度因
(1)证明:连接BD交AC于点O,连接EO.∵O为BD中点,E为PD中点,∴EO∥PB.∵EO⊂平面AEC,PB⊄平面AEC,∴PB∥平面AEC.(2)∵四边形ABCD是正方形∴BD⊥AC,∵PA⊥平
十几年了,最近突然开始回顾学生时代,只有这立体几何还记得,(1)求证:EF⊥CD;∵ABCD为矩形∴CD⊥AD又∵PD⊥平面ABCD∴PD⊥CD∴CD⊥平面PAD,CD⊥PA∵E、F均为中点∴EF∥P
1)延长EP交AD于M,EM⊥ADP在对角线上,PM=PF=MD=DF∴AM=AD-MD=CD-DF=CF=EPRt△AMP≌Rt△EPF,∴EF=AP或勾股定理,EF^2=PF^2+EP^2=PM^
延长AB,过F作FG⊥AB延长线于G∵正方形ABCD,AB=√2∴AD=BC=CD=AB=√2∴AC=√2×√2=2∵菱形AEFC∴AF=AC=2,BF∥AC∴∠FBG=∠CAB=45∵FG⊥AB∴B
取BC中点F,E关于AC对称点即为F,PE=PF,PE+PD=PF+PD=DF=二分之根号三
侧棱SD⊥底面ABCD这一条件多余.证明:在平面SDC内作FG平行于CD,交SD与点G,连接AG;过F作三角形CDS边CD上的高FH,垂足为H,连接EH因为FG平行于CD,且CD平行于AE(已知+正方
勾股定理:x的平方+x的平方=12的平方得X=6倍根号2,过P点分别作PM垂直于BD,PN垂直于AC,M,N分别在BD,AC上.用角角定理得:三角形ANP相似于三角形ABC;三角形BMP相似于BAD三
证明:取AD的中点H,连接FH,GH,则EF∥DC,EF=(1/2)DC=1,GH∥DC所以:EF∥GH所以:EFHG是梯形,即EFHG四点确定一个平面,又因为:AP∥FH,且FH在平面EFHG内所以
∵CD⊥AD(正方形哈)又∵CD⊥PD(PD⊥面ABCD)∴就有CD⊥于面PAD又EF平行CD(中位线)∴EF⊥面PAD因为PA属于面PAD∴PA⊥EF做AP的重点M,并连接BM,FM,易得BG平行相
找到取AD中点H,连接FH,∵PE:EC=PF:FD=1:1∴EF‖CD在正方形ABCD中H、G是对边中点HG//CD∴EF//HG所以EFHG在一个平面,又AH:HD=DF:FP=1:1则FH‖PD
设AC、BD交于点0,易证EF+EG=A0(用等积法),又因为AO=1/2AC(这应该知道吧)所以EF+EG=A0=5
只提供思路:三角形BCE的面积是正方形面积的四分之一;关键是证明小三角形BME的面积是中三角形BCM面积的四分之一(面积比是对应边比的平方)那么,中三角形BCM面积是大三角形CEB面积的五分之四结果是