正方形abcd中,点E是直线AB上的一动点

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 09:06:37
正方形abcd中,点E是直线AB上的一动点
空间距离在棱长为a的正方体ABCD-A1B1C1D1中,点E,F分别是面BB1C1C和ABCD的中心,则异面直线EF与A

用向量的解法.设A1C1上的点坐标,为MEF上点坐标,为N可以使得MN同上面两条线段都垂直,使得MN的长度就是异面直线的距离.此时可以用向量垂直,内积为0求出M,N两点坐标,从而得到距离.

如图,正方形纸片ABCD和正方形EFGH的边长都是1,点E是正方形ABCD的中心,在正方形EFGH绕着点E旋转的过程中,

(1)两个正方形重叠部分的面积保持不变;(2)重叠部分面积不变,总是等于正方形面积的14,即14×1×1=14,连接BE,CE,∵四边形ABCD和四边形EFGH都是正方形,∴EB=EC,∠EBM=∠E

已知正方形ABCD中,直线AG分别交BD,CD于点E,F,交BC的延长线于点G,点H是线段是FG上的点,且HC垂直于CE

先证明:△abe和△cbe全等(sas)很好证所以∠eab=∠ecb因为ab平行cd所以∠eab=∠dfa=∠gfc(对顶角)因为∠dcb=90所以∠ecb+∠ecd=90因为∠ech=90所以∠fc

正方形ABCD的顶点A在直线MN上,点O是对角线AC、BD的交点,过点O作OE⊥MN于点E,过点B作BF⊥MN于点F.

图2结论:AF﹣BF=2OE,图3结论:AF﹣BF=2OE.对图2证明:过点B作BG⊥OE交OE的延长线于G,则四边形BGEF是矩形,∴EF=BG,BF=GE,在正方形ABCD中,OA=OB,∠AOB

正方形ABCD中,点O是对角线AC的中点,P是对角线AC上一动点,过点P作PE⊥PB,交直线CD于点E,如图1,当点P与

(1)过p做PM垂直bc,PN垂直DC,角PEC=角PBC(PBCE,四点共圆,或者转角也可以)又pn=pm所以三角形pmb全等三角形pne(2)AF+CE=EF三角形cbe逆时针旋转90°,证三角形

已知点E在正方形ABCD中,三角形EBC是等边三角形,求角AED的度数.

易知角ABE=30度,AB=BE,所以角AEB=75度.同理角DEB=75度;又角BEC=60度,所以角AED=360度—角AEB—角DEB—角BEC角AED=150度

1.2)如图,已知正方形ABCD中,点E在边DC上,DE=2,EC=1,把线段AE绕点A旋转,使点E落在直线BC上的点F

F、C两点的距离为1或5.理由如下:∵四边形ABCD是正方形∴AB=AD=BC=DC=DE+EC=2+1=3.由题意,把线段AE绕点A旋转,使点E落在直线BC上的点F处,∴AF=AE.情形①:当点F在

如图,已知正方形ABCD中,点E在边DC上,DE=2,EC=1,把线段AE绕点A旋转,使点E落在直线BC上的点F处,

呵呵,这样做的.(1)若点F在线段BC上∵AE=AF∠ABC=∠ADE=90°AB=AD∴△ADE≌△ABF(HL)(2)∵△ADE≌△ABF∴BF=DE=2FC=1∴EF^2=FC^2+CE^2=根

如图已知正方形ABCD中,点E在边DC上,DE=2,EC=1把线段AE绕点A旋转,使点E落在直线BC上的点F处,求F、C

在正方形ABCD中,AB=AD,∠ABC=∠D=90°,由旋转的性质得,AF=AE,在Rt△ABF和Rt△ADE中,AF=AEAB=AD,∴Rt△ABF≌Rt△ADE(HL),∴BF=DE=2,∵DE

已知正方形ABCD中,点E在边DC上,DE=2,EC=1(如图所示)把线段AE绕点A旋转,使点E落在直线BC上的点F处,

旋转得到F1点,∵AE=AF1,AD=AB,∠D=∠ABC=90°,∴△ADE≌△ABF1,∴F1C=1;旋转得到F2点,同理可得△ABF2≌△ADE,∴F2B=DE=2,F2C=F2B+BC=5.

正方形ABCD的顶点A在直线MN上,点O是对角线AC、BD的交点,过点O作OE⊥MN于点E,过点B作BF⊥MN于点F.

(1)证明:如图,过点B作BG⊥OE于G,则四边形BGEF是矩形,∴EF=BG,BF=GE,在正方形ABCD中,OA=OB,∠AOB=90°,∵BG⊥OE,∴∠OBG+∠BOE=90°,又∵∠AOE+

.已知正方形ABCD中,AB= 5,E是直线BC上的一点,联结AE,过点E作EF⊥AE,交直线CD于点F.

(1)①EF⊥AE,所以∠BAE=∠CEF,△BAE∽△CEF对应边成比例:CF/BE=CE/AB=(BC-BE)/AB即:y/x=(5-x)/5y=(-1/5)x²+x所以,y关于x的函数

在正方形ABCD中,E,F分别是BC和DC上的点,且

将三角形ABE逆时针旋转,使AB与AD重合,B点转到B’点.证明三角形AB'F和三角形AFE全等,边角边然后三角形AB'F的面积是8*4/2=16注:B'F=EF=8,AD=4可得

如图,在正方形ABCD中,E是AD的中点,点F在DC上

设AB=4.则BE=√20,EF=√5,BF=5.BE²+EF²=BF²∴∠BEF=90º.BE⊥EF.无量寿佛,佛说苦海无涯回头是岸!施主,我看你骨骼清奇,器

如图所示,正方形ABCD和正方形EFGH的边长分别为a和b,点E是正方形ABCD的中心,在正方形EFGH绕着点E旋转的过

不变分析:设旋转后是正方形则边长为1/2a*1/2a=1/4a^2若不为正方形则可以割补成为一个正方形(初四旋转会学,初三全等三角形也可以证明)

已知正方形ABCD中,点E在边DC上把线段AE绕点A旋转,使点E落在直线BE上的点F处,则F,C两点间的距离为

未提供数据,下面是查到的题目,DE=2,EC=1因DE=2,EC=1,可知正方形边长为3若点F在线段BC上,则△ADE≌△ABF,BF=DE=2,所以FC=EC=1.若点F在CB延长线上,则同理△AD

如图所示,四边形ABCD,CEFG是正方形,B,C,E在同一条直线上,点G在CD上,正方形ABCD的边长是4,则△BDF

设EF=a则S△BEF=0.5a(a+4)S梯形CEFD=0.5a(a+4)S△ABD=8△BDF的面积是S△BDF=S梯形CEFD+S□ABCD-S△BEF-S△ABD=8

请阅读下列材料:问题:如图,在正方形ABCD和平行四边形BEFG中,点A,B,E在同一条直线上,P是线段DF的中点,连接

(1)∵正方形ABCD中,∠ABC=90°,(1分)∴∠EBG=90°,(2分)∴▱BEFG是矩形(3分)(2)90°;(4分)理由:延长GP交DC于点H,∵正方形ABCD和平行四边形BEFG中,AB

正方形ABCD中,AC、BD相交于点O,点E是射线AB上一点,点F 是直线AD上一点,BE=DF,连接EF交线段BD于点

请点击以上链接,寻找你的答案!很多年没读书了,当年我数学还是110~146分成绩的,本来想自己给你解的,希望能采纳!